02b6c24a05cb27fc2927810426b3a17319d06b80
2 * This source code is a product of Sun Microsystems, Inc. and is provided
3 * for unrestricted use. Users may copy or modify this source code without
6 * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
7 * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
8 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
10 * Sun source code is provided with no support and without any obligation on
11 * the part of Sun Microsystems, Inc. to assist in its use, correction,
12 * modification or enhancement.
14 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
15 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
16 * OR ANY PART THEREOF.
18 * In no event will Sun Microsystems, Inc. be liable for any lost revenue
19 * or profits or other special, indirect and consequential damages, even if
20 * Sun has been advised of the possibility of such damages.
22 * Sun Microsystems, Inc.
24 * Mountain View, California 94043
32 * g723_24_encoder(), g723_24_decoder()
34 * These routines comprise an implementation of the CCITT G.723 24 Kbps
35 * ADPCM coding algorithm. Essentially, this implementation is identical to
36 * the bit level description except for a few deviations which take advantage
37 * of workstation attributes, such as hardware 2's complement arithmetic.
42 #include "g72x_priv.h"
45 * Maps G.723_24 code word to reconstructed scale factor normalized log
48 static short _dqlntab
[8] = {-2048, 135, 273, 373, 373, 273, 135, -2048};
50 /* Maps G.723_24 code word to log of scale factor multiplier. */
51 static short _witab
[8] = {-128, 960, 4384, 18624, 18624, 4384, 960, -128};
54 * Maps G.723_24 code words to a set of values whose long and short
55 * term averages are computed and then compared to give an indication
56 * how stationary (steady state) the signal is.
58 static short _fitab
[8] = {0, 0x200, 0x400, 0xE00, 0xE00, 0x400, 0x200, 0};
60 static short qtab_723_24
[3] = {8, 218, 331};
65 * Encodes a linear PCM, A-law or u-law input sample and returns its 3-bit code.
66 * Returns -1 if invalid input coding value.
71 G72x_STATE
*state_ptr
)
73 short sei
, sezi
, se
, sez
; /* ACCUM */
77 short dqsez
; /* ADDC */
80 /* linearize input sample to 14-bit PCM */
81 sl
>>= 2; /* sl of 14-bit dynamic range */
83 sezi
= predictor_zero(state_ptr
);
85 sei
= sezi
+ predictor_pole(state_ptr
);
86 se
= sei
>> 1; /* se = estimated signal */
88 d
= sl
- se
; /* d = estimation diff. */
90 /* quantize prediction difference d */
91 y
= step_size(state_ptr
); /* quantizer step size */
92 i
= quantize(d
, y
, qtab_723_24
, 3); /* i = ADPCM code */
93 dq
= reconstruct(i
& 4, _dqlntab
[i
], y
); /* quantized diff. */
95 sr
= (dq
< 0) ? se
- (dq
& 0x3FFF) : se
+ dq
; /* reconstructed signal */
97 dqsez
= sr
+ sez
- se
; /* pole prediction diff. */
99 update(3, y
, _witab
[i
], _fitab
[i
], dq
, sr
, dqsez
, state_ptr
);
107 * Decodes a 3-bit CCITT G.723_24 ADPCM code and returns
108 * the resulting 16-bit linear PCM, A-law or u-law sample value.
109 * -1 is returned if the output coding is unknown.
114 G72x_STATE
*state_ptr
)
116 short sezi
, sei
, sez
, se
; /* ACCUM */
122 i
&= 0x07; /* mask to get proper bits */
123 sezi
= predictor_zero(state_ptr
);
125 sei
= sezi
+ predictor_pole(state_ptr
);
126 se
= sei
>> 1; /* se = estimated signal */
128 y
= step_size(state_ptr
); /* adaptive quantizer step size */
129 dq
= reconstruct(i
& 0x04, _dqlntab
[i
], y
); /* unquantize pred diff */
131 sr
= (dq
< 0) ? (se
- (dq
& 0x3FFF)) : (se
+ dq
); /* reconst. signal */
133 dqsez
= sr
- se
+ sez
; /* pole prediction diff. */
135 update(3, y
, _witab
[i
], _fitab
[i
], dq
, sr
, dqsez
, state_ptr
);
137 return (sr
<< 2); /* sr was of 14-bit dynamic range */