
Faustine User Manual

CRI – Mines ParisTech
Centre de Recherche en Informatique

September 2013

2

Contents

1 Introduction 5

1.1 Design Principles . 5

2 Compiling and installing Faustine 7

2.1 Organization of the distribution 7

2.2 Compiling and Installing . 7

3 How to use Faustine 9

4 How to maintain and extend Faustine 11

3

4 CONTENTS

Chapter 1

Introduction

Faustine is an interpreter for multi-rate and vector exented Faust programs
testing, written in OCaml, at CRI of MINES ParisTech, and covered by the
GNU Public License V3 (see LICENSE.txt).

Faust (Functional Audio Stream) is a functional programming language
specifically designed for real-time signal processing and synthesis. Faust
targets high-performance signal processing applications and audio plug-ins
for a variety of platforms and standards.

1.1 Design Principles

Various principles have guided the design of Faustine:

• Faustine is a test bed interpreter for faust programs, especially for
vector extension. It aims at providing a framework to test vector and
multi-rate ideas quite easily, without having to deal with the burdens
of the compiler. Faustine is written in OCaml.

• Faustine programs are interpreted upon Faust language and exten-
sions, onto input files (wav or csv), and producing output files (also
wav or csv). The interpreter relies on a Faust preprocessor to trans-
late Faust programs into equivalent flatten programs containing only
core Faust functions except GUI ones.

• In most cases, Faustine is inefficient but, still, it often allows to get a
idea of time consumption location.

5

6 CHAPTER 1. INTRODUCTION

• Faustine depends on g++ and ocamlopt compilers. It embeds libsnd-
file and a slighlty modified version of libsndfile-ocaml.

• For the moment, Faustine only handles dynamic type-checking but
future work should address static type-checking.

• Faustine current extension supports four multirate and vector func-
tions: vectorize, serialize, [] (pick vector element), and # (con-
catenate two vector elements).

• So far, several vector libraries have been developed: complex.lib, fft.lib,
fft2d.lib and morpho.lib.

Chapter 2

Compiling and installing

Faustine

Faustine’s git repository can be cloned calling:

git clone https://scm.cri.ensmp.fr/git/

Faustine.git

2.1 Organization of the distribution

Faustine directory should contain the following elements:

benchmarks/ benchmark result files
Changes.txt what’s new with each release
configure compilation configuration script
examples/ vector examples (fft, image processing...)
INSTALL.txt Faustine installation instructions
interpreter/ Faustine’s interpreter source code
lib/ library files in Faustine (fft.lib, morpho.lib...)
LICENSE.txt license and copyright notice
Makefile main Makefile to compile and install
README.txt this file

2.2 Compiling and Installing

Faustine has no dependencies outside standard libraries, except OCaml and
g++ compilers and ’make’-like standard commands. Therefore the compila-

7

8 CHAPTER 2. COMPILING AND INSTALLING FAUSTINE

tion should be straightforward. Configure is necessary for libsndfile embed-
ded library. To compile the Faustine interpreter do:

cd Faustine/

./ configure

make

sudo make install

If the compilation was successful you can test the interpreter before installing
it:

make test

Chapter 3

How to use Faustine

9

10 CHAPTER 3. HOW TO USE FAUSTINE

Chapter 4

How to maintain and extend

Faustine

11

	Introduction
	Design Principles

	Compiling and installing Faustine
	Organization of the distribution
	Compiling and Installing

	How to use Faustine
	How to maintain and extend Faustine

