
Noise

Grame, Yghe

March 9, 2010

name Noise
version 1.1
author Grame, Yghe
license BSD
copyright (c)GRAME 2009

//---

// Noise generator and demo file for the Faust math documentation

//---

declare name "Noise";

declare version "1.1";

declare author "Grame";

declare author "Yghe";

declare license "BSD";

declare copyright "(c)GRAME 2009";

1 Presentation of the ”noise.dsp” Faust program

This program describes a white noise generator with an interactive volume,
using a random function.

1.1 The random function

random = +(int(12345))~*(int(1103515245));

The random function describes a generator of random numbers, which equation
follows. You should notice hereby the use of an integer arithmetic on 32 bits,
relying on integer wrapping for big numbers.

1. Output signal y such that

y(t) = r1(t)

2. Input signal (none)

1

3. Intermediate signal r1 such that

r1(t) = 12345⊕ 1103515245� r1(t−1)

1.2 The noise function

noise = (int(random))/(int(random+1));

The white noise then corresponds to:
1. Output signal y such that

y(t) = s1(t)

2. Input signal (none)

3. Intermediate signal s1 such that

s1(t) = int (r1(t))� int (1⊕ r1(t))

1.3 Just add a user interface element to play volume!

process = noise * vslider("Volume[style:knob]", 0, 0, 1, 0.1);

Endly, the sound level of this program is controlled by a user slider, which gives
the following equation:

1. Output signal y such that

y(t) = us1(t) · s1(t)

2. Input signal (none)

3. User-interface input signal us1 such that

”Volume” us1(t) ∈ [0, 1] (default value = 0)

2 Block-diagram schema of process

This process is illustrated on figure 1.

2

12345 int
+

1103515245int
*

random

int

12345 int
+

1103515245int
*

random

1

+ int

/

noise

vslider(Volume[style:knob], 0, 0, 1, 0.1)

*

process

Figure 1: Block diagram of process

3 Notice of this documentation

You might be careful of certain information and naming conventions used in
this documentation:

• This document was generated using Faust version 0.9.13 on March 09,
2010.

• The value of a Faust program is the result of applying the signal trans-
former denoted by the expression to which the process identifier is bound
to input signals, running at the fS sampling frequency.

• Faust (Functional Audio Stream) is a functional programming language
designed for synchronous real-time signal processing and synthesis appli-
cations. A Faust program is a set of bindings of identifiers to expressions
that denote signal transformers. A signal s in S is a function mapping1

times t ∈ Z to values s(t) ∈ R, while a signal transformer is a function

1Faust assumes that ∀ s ∈ S,∀ t ∈ Z, s(t) = 0 when t < 0.

3

from Sn to Sm, where n,m ∈ N. See the Faust manual for additional
information (http://faust.grame.fr).

• Every mathematical formula derived from a Faust expression is assumed,
in this document, to having been normalized (in an implementation-depen-
dent manner) by the Faust compiler.

• A block diagram is a graphical representation of the Faust binding of an
identifier I to an expression E; each graph is put in a box labeled by I.
Subexpressions of E are recursively displayed as long as the whole picture
fits in one page.

• ∀x ∈ R,

int(x) =

 bxc if x > 0
dxe if x < 0
0 if x = 0

.

• This document uses the following integer operations:

operation name semantics
i⊕ j integer addition normalize(i + j), in Z
i� j integer multiplication normalize(i · j), in Z
i� j integer division normalize(int(i/j)), in Q

Integer operations in Faust are inspired by the semantics of operations
on the n-bit two’s complement representation of integer numbers; they
are internal composition laws on the subset [−2n−1, 2n−1−1] of Z, with
n = 32. For any integer binary operation × on Z, the ⊗ operation is
defined as: i⊗ j = normalize(i× j), with

normalize(i) = i−N · sign(i) ·
⌊
|i|+ N/2 + (sign(i)−1)/2

N

⌋
,

where N = 2n and sign(i) = 0 if i = 0 and i/|i| otherwise. Unary integer
operations are defined likewise.

• The noisemetadata-mdoc/ directory may also include the following sub-
directories:

– cpp/ for Faust compiled code;

– pdf/ which contains this document;

– src/ for all Faust sources used (even libraries);

– svg/ for block diagrams, encoded using the Scalable Vector Graphics
format (http://www.w3.org/Graphics/SVG/);

– tex/ for the LATEX source of this document.

4

4 Listing of the input code

The following listing shows the input Faust code, parsed to compile this math-
ematical documentation.

Listing 1: noisemetadata.dsp� �
1 //---
2 // Noise generator and demo file for the Faust math documentation
3 //---
4

5 declare name "Noise";
6 declare version "1.1";
7 declare author "Grame";
8 declare author "Yghe";
9 declare license "BSD";

10 declare copyright "(c)GRAME 2009";
11

12

13 random = +(int(12345))~*(int(1103515245));
14

15

16 noise = (int(random))/(int(random+1));
17

18

19 process = noise * vslider("Volume[style:knob]", 0, 0, 1, 0.1);� �

5

