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Introduction

Faust is a programming language designed for the creation of stream
processors. The name Faust stands for Functional audio stream, and sug-
gests both a musical and a devilish (!) side. It has been developed by Grame
since 2000 [OFL02], to help programmers, but also composers and various
sound hackers to build audio stream processors. The Faust language is based
on functional programming paradigms [Hug89], but the Faust compiler pro-
duces C++ code that is optimized by a λ-abstraction-based mechanism.

The portability of C++ entails the portability of Faust if one can bring the
good wrapper files that will make the C++ code compilable as a standalone
application on your system.

This tutorial aim is to present the Faust syntax and grammar, and com-
mented examples.

The Part I begins with a presentation of some theoretical aspects of the
language (Chapter 1) that may help to understand the tutorial, and the way
to program with Faust. Then, in Chapter 2 are listed the keywords, and in
Chapter 3 the composition operators. In Chapter 4 we’ll introduce to the
structure of a Faust program. This part ends with how to compile a Faust
program (Chapter 5).

The Part II gives some commented examples. In Chapter 6, are pre-
sented oscillators that would be used as primitive generators in synthesisers
applications. And from Chapter 7 to the end of the part, a few examples of
filters and complex generators. All examples are presented the same way :
first the purpose of the application, then the Faust source code, and even-
tually the explanation — line by line — of the program.
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Introduction 2

Conventions

Here are some font conventions used in this tutorial. The Faust source
code is written with a Typewriter font :

process = hslider("Frequency",1,1,2000,1):sinus;

The same font is used for C++ code, except for the keywords that are in
bold Roman :

for (int i=0; i<count; i++) {1

output0[i] = ((input0[i] * 0.5) + (input1[i] * 0.5));2

}3

The file names and paths are written with a Sans-Serif font :

/src/faust/architecture/alsa-gtk.cpp
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Chapter 1

Preview

An algebra for block-diagram languages was proposed [OFL02] to pro-
vide descriptions and tools to handle data streams in a functional way. The
Faust language is an implementation of this algebra. Therefore, Faust is
a real functional programming language, especially designed to process nu-
meric data streams.

This chapter gives a theoretical approach of the Faust language. The
introduced notions will be used to link the Faust materials to mathematical
descriptions or to block diagrams. Therefore we’ll first present the matter
of Faust programming : streams and stream processors.

1.1 An Algebra for Block Diagram Languages

Here is a brief summary of the work of the Grame team [OFL02]. This
algebra is the root of the Faust language. It presentation should help to un-
derstand the Faust programming philosophy, an in particular, it will high-
light the difference between a number and a stream, i.e. a signal. The
comprehension of this difference is essential while Faust programming.

Therefore, we define a stream or a signal, as a real-valued function of
time. Because the streams we’re speaking about are sampled streams, the
time is an integer (in fact the number of samples). So, we can define S, the
ensemble of the streams, this way :

S = { s : N → R } = R
N

The value of a stream s at the moment t is noted s(t). A special notation
can be used for the elements of S :

∀ s ∈ S, s−1 is defined by : ∀ t ∈ N, s−1(t + 1) = s(t)

7



Chapter 1 Preview 8

A stream processor is a function from streams tuples to streams tuples.
More precisely, if n and m are integers, one obtains a m-tuple of streams
from a n-tuple of streams. The n-tuples are noted with parenthesis. The
S

0 ensemble only contains the empty-tuple ( ). (s1, s2, . . . , sn) ∈ S
n is a

n-tuple of streams. Therefore, if P is the ensemble of the stream processors,
then p ∈ P is equivalent to :

∃(n,m) ∈ N
2, p : S

n → S
m

Then, p is a function so we should write p
(

(x1, x2, . . . , xn)
)

= (y1, y2, . . . , ym),

where x1, x2, . . . , xn and y1, y2, . . . , ym are streams. But, to simplify the no-
tation from now, only some single parenthesis will be used :

p(x1, x2, . . . , xn) = (y1, y2, . . . , ym)

For example if p is a stream processor that ‘adds’ two signals to make a
single signal.

Then p : S
2 → S

1 and :

∀(x1, x2) ∈ S
2, p(x1, x2) = (y)

with y ∈ S \ ∀ t ∈ N, y(t) = x1(t) + x2(t)

With the λ-notation :

∀(x1, x2) ∈ S
2, p(x1, x2) = (λt . x1(t) + x2(t))

Then one has to deal with a different stream processor, q that adds a
phase difference φ to a signal.
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Then q : S
1 → S

1 and :

∀ x ∈ S,∃ y ∈ S, q(x) = (y)

where ∀ t ∈ N, y(t) = x(t − φ)

This last example shows the importance of the difference between num-
bers and streams, and so between real-valued functions and stream proces-
sors.

1.2 The semantic function

This function is used to distinguish the programming language notations
from their mathematical meaning [Gun92]. It is noted with double brackets
[[ ]] with no suffix for the Faust semantic function, and [[ ]]C for the C++

one.

For example, if A and B are some C++ expressions, we can write :

[[ +(A ,B ) ]]C = [[ A +B ]]C = [[ A ]]C + [[ B ]]C

which just means that the addition in C++ can be noted as a function +( , ),
or with the normal math notation, and that the math signification is exactly
the normal addition.

Thus, as a Faust expression, i.e. written in the Faust language, is a
signal processor :

[[Faust expression ]] ∈ P

Let’s take the two examples shown in the previous section. The first one,
which sums two signals, has a direct Faust implementation noted +. Thus
we have the following relation :

[[ + ]] = p

where p is the same signal processor as before. It can be represented by this
block diagram :
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The second example is slightly more complex unless the delay duration
is only of one sample. Then, the signal processor q will be written mem in a
Faust program :

[[ mem ]] = q

Thus a Faust expression can always be associated to a signal processor
that can be described by some mathematical expressions. In this tutorial,
the Faust material will be described both by block diagrams and mathemat-
ical expressions. You may use the block diagrams to have a global idea of
what the Faust expressions represent, and the mathematical expressions to
have a more accurate idea of how it works.

1.3 Block-diagrams

On diagrams, the box-name is drawn in the center of it, or above the
upper left corner of it when it contains something (a symbol or some other
boxes). When a box is made with a combination of boxes, it is drawn with
dashed lines.

The box sometime contains a dot normally in the upper left corner, as
on chipsets, that may show if the box is turned upside down. In that case,
the text isn’t rotated to keep it readable.

The name is written in italic if the box-name isn’t a keyword of the
language. For example, the built-in box mem will be drawn with the name
in upright types. A name chosen by the programmer will be drawn with an
italic font.



Chapter 2

Primitives

A block-diagram — i.e. a Faust expression — can be a single primitive
box or the composition of two block-diagrams. These primitive boxes, can
also be called built-in boxes.

2.1 Plug boxes

2.1.1 Identity box :

In certain cases this box can be considered as a wire box. This is the
mono dimensional identity function : it does nothing else but transmit the
data stream. Because the Faust compiler operates a formal simplification of
the block-diagram before the C++ conversion, this kind of box never appears
— by any way — in the C++ code. This box is mostly used to clarify the
Faust source code.

The mathematical representation is :

∀ (x) ∈ S
1, [[ ]](x) = (x)

2.1.2 Cut box : !

This box terminates the stream. It’s a dead end. It has one input and
zero output. It is mostly used to make the number of input and output
match when connecting boxes.

11
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The mathematical representation is :

∀ (x) ∈ S
1, [[ ! ]](x) = ( )

2.2 Math operators

2.2.1 Arithmetic operators

The four math operators + − × / are implemented as boxes in Faust.
The operation modulo, noted % in C++, is also available. Since they are
binary operators, the equivalent boxes have 2 inputs and 1 output.

The Faust notations for these boxes are respectively : + - * / %. Be-
ware these operators are boxes, i.e. functions on streams. Consequently,
they’re not — strictly speaking — Faust operators (those are presented in
the next chapter). But we’ll see later how the syntax of these functions can
be simplified to look like real operators with a little syntactic sugar.

Here’s the mathematical representations of +, -, * and / :

∀ (x1, x2) ∈ S
2, [[ + ]](x1, x2) = (y)

with ∀ t ∈ N, y(t) = x1(t) + x2(t)

∀ (x1, x2) ∈ S
2, [[ - ]](x1, x2) = (y)

with ∀ t ∈ N, y(t) = x1(t) − x2(t)

∀ (x1, x2) ∈ S
2, [[ * ]](x1, x2) = (y)

with ∀ t ∈ N, y(t) = x1(t) × x2(t)

∀ (x1, x2) ∈ S
2, [[ / ]](x1, x2) = (y)

with ∀ t ∈ N, y(t) =
x1(t)

x2(t)
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The % symbol is the C++-like operation modulo. It gives the rest of
the division of the first argument by the second one. Beware there’s no
rest when dividing a real number, or by a real number, hence you cannot
combine this box with some floating-point-valued streams. See casting boxes
in section 2.5, page 14.

2.2.2 Comparison operators

The six comparison operators are also available with the C++ syntax1 :
<, >, >=, <=, != and ==. These other binary operators are provided as boxes
of which the output is either the integer 0 or 1. These boxes compare the
two inputs and set the output to 0 if the result of the comparison is false,
and 1 if it’s true.

Here’s the mathematical representation of <= :

∀ (x1, x2) ∈ S
2, [[ <= ]](x1, x2) = (y)

with ∀ t ∈ N, y(t) =

{

1 if x1(t) ≤ x2(t)
0 else

Beware to add a space between the serial composition operator ‘ : ’ and
the greater-than operator ‘ > ’ to differentiate it from the merge operator
‘ :> ’ (next chapter).

2.3 Bitwise operators

The C++ bitwise operators << and >> are provided as boxes. And also
the bitwise comparison operators &, | and ^, that are respectively the logical
and, or and xor. They are all boxes with 2 inputs and 1 output.

∀ (x1, x2) ∈ S
2, [[ << ]](x1, x2) = (y)

with ∀ t ∈ N, y(t) = x1(t) [[ << ]]C x2(t)

∀ (x1, x2) ∈ S
2, [[ & ]](x1, x2) = (y)

with ∀ t ∈ N, y(t) = x1(t) [[ & ]]C x2(t)

2.4 Constants

A constant box has no input and generates a constant signal. It is defined
from the literals C++ syntax. For example : [[ 10 ]]( ) = (λt . 10).

In the following paragraphs, the symbol # represents any digit or string
of digits.

1See [Str00] if you are unfamiliar with these notations.
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Integers ‘#’ represents an integer. ‘012’ and ‘12’ both represent a con-
stant box of which the output signal is the integer 12. ‘-12’ represents a
constant box of which the output signal is the integer −12.

Floats ‘#.#’ represents a floating-point number, a rational number. ‘1.2’
represents a constant box of which the output signal is the rational number
1.2. If you want to force an integer (no decimal part) to be considered as a
float, then you can write just the point next to the integer : ‘12.’ represents
a constant box of which the output signal is the rational number 12. You
can also write ‘12.0’. If the whole number portion is zero, then you don’t
have to write the zero : ‘.35’ represents a constant box of which the output
signal is the rational number 0.35. Negative numbers can also be used.

Beware that Faust only accepts the C++ types float and int, and no
other (no pointer). As for now, there’s not yet any predefined constants
(like π or the sampling rate).

2.5 Casting

There are two boxes to make the cast operations : float and int. It
will make a C++ implicit cast on a single input in order to generate the
output. Most of the time Faust will do the cast, but you may however
have to check the process for Faust isn’t always accurate and may even in
certain circumstances fail to do it. In certain cases, an absence of cast would
seriously prevent a good functioning of the program. A correct use of the
C++ literals will reduce the need in cast boxes.

2.6 Foreign functions

You can define a box from a C++ function defined in an extern C++ file.
To do it you must use the reserved word ffunction :

ffunction( prototype , include , library )
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prototype is the C++ prototype of the function you want to use, e.g.
float sin(float). The C++ function can have many arguments. All the
arguments of this foreign function will be used as box inputs, respecting
the same order. Because the C++ function can only have a maximum of one
output, then the box will have one or no output. Remember that Faust only
handles int and float (no pointer nor double).

include is the argument of the C++ command #include, e.g. <math.h>.
You must use the exact same argument as you would do to use the function
in a C++ program. So you can use both < > and " ", as in a C++ file.

library is a filename added as a comment at the beginning of the C++

file generated by Faust, useful to remind to the programmer to add this file
in the linking mechanism (see section 5.4, page 34).

/* Link with library */

Because the standard libraries don’t have to be explicitly linked to, then
you will often use a blank "" for this argument.

Here’s an example that provides the sin() function as a box :

ffunction( float sin(float), <math.h>, "")

2.7 Memories

The memories are useful to make delays, to store a few values, parameters
or data.

2.7.1 Simple delay mem

The mem box is a delay of which duration equals the sampling period.
Here’s the mathematical definition :

∀ (x) ∈ S
1, [[ mem ]](x) = (x−1)

2.7.2 Read-only table

The read-only table rdtable allows you to store values from a stream
at initialisation time. The data will then be accessed to during execution.

The rdtable box has 3 inputs and 1 output. The 3 input streams are :



Chapter 2 Primitives 16

• size of table : open flow only during initialisation time. Must be a
constant integer defined before initialisation.

• initialising stream : open flow during initialisation time which fills the
data table.

• read-index : will only be used during execution. Must be a positive
integer bounded by 0 and the table size minus one.

During the execution, this box uses only one stream. So, at this time,
the box can be considered as having only one input which is the read index.
For example :

During execution, the values contained in the table can’t be changed. If
you need a table which content can be changed during execution, then you
need the rwtable.

2.7.3 Read-write table

The read-write table rwtable is almost the same as the rdtable box,
except that the data stored at initialisation time can be modified. So it has
2 more input streams for the writing stream and the write-index.

Then, the 5 input streams are :

• size of table,

• initialising stream,
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• write-index that must be a positive integer between zero and the table
size minus one,

• writing stream, of which instant value will be written a write-index
position in the table,

• read-index.

Beware the writing stream can’t be stopped, and is always writing at
write-index position. You will have to provide an additional cell in the table
that will be used as a dead-end, if the writing stream isn’t always useful.

2.8 Selection switch

There’s two selection switches in Faust : select2 and select3. They
let you select 1 stream between 2 or 3, from an index stream.

The select2 box receives 3 input streams, the selection index, and the
two alternative streams.

The math signification of this box is :

∀ (i, s1, s2) ∈ S
3,

[[ select2 ]](i, s1, s2) = (λt . (1 − i(t)) · s1(t) + i(t) · s2(t) )
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If index is 0, then the output is stream 0, and if index is 1, then the output
is stream 1. If index is greater than 1, then the output is 0, and an error
can occur during execution.

The select3 box is exactly the same except that you can choose between
3 streams.

2.9 Graphic user interface

One interesting aspect of Faust is that it can generate graphic user in-
terfaces automatically, which represents an important time-saving. Those
primitives have a special behaviour that is described in section 4.1, page 27.

2.9.1 Button

The button primitive has the following syntax :

button("label")

This box is a monostable trigger. It has no input, and one output that
is set to 1 if the user click the button, and else to 0.

2.9.2 Checkbox

The checkbox is a bistable trigger. After a mouse click, the output is
set to 1. If you click again the output is set to 0. The state changes on
mouse up.

Here’s the syntax :

checkbox("label")
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2.9.3 Sliders

The slider boxes hslider (horizontal) and vslider (vertical) provide
some powerful controls for the parameters. Here’s the syntax :

hslider("label", start, min, max, step)

This produce a slider, horizontal or vertical, that let the user pick a
value between min and max−step. The initial value is start. When the user
moves the slider, the value changes by steps of the value of step. All the
parameters can be floats or ints.

The associated box has no input, and one output which is the value that
the slider displays.

2.9.4 Numeric entry

This primitive displays a numeric entry field on the GUI. The output of
this box is the value displayed in the field.

nentry("label", start, min, max, step)

2.9.5 Groups

The primitives hgroup and vgroup gather GUI objects in a group :

hgroup("label", Faust expression)
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The group gather the GUI objects contained in the Faust expression : they
are not boxes.

On the contrary, the tgroup primitive spreads the GUI objects found in
a faust expression into tabs, eg :

A = hslider("Slider 1",50,0,100,1);

B = hslider("Slider 2",50,0,100,1);

C = hslider("Slider 3",50,0,100,1);

process = tgroup("Sliders",(A,B,C));

Here is what one can get after Faust and C++ compilation (with GTK) :
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Composition operators

The composition operators are used to combine block-diagrams. From
a mathematical point of view, these operators are like the composition of
functions. Five composition operators are available in Faust : serial, parallel,
split, merge and recursive.

The precedence and the associativity of the operators are given in the
last section of this chapter.

3.1 Serial

Notation : A : B

This operator makes a serial connection of the two operand boxes. It
means that the outputs of A are connected to the inputs of B, respecting
their order. The first output of A is connected to the first input of B, etc. . .
The remaining inputs or outputs are directly used as inputs or outputs of
the resulting block-diagram.

21
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3.2 Parallel

Notation : A , B

This operator makes a block-diagram by positioning the two operands
in parallel. There’s no connection between the boxes. All the inputs of
both the boxes are used as inputs of the resulting block-diagram, as for the
outputs.

3.3 Split

Notation : A <: B

This operator is slightly more complex. The outputs of A are spread on
the inputs of B. This means that each output of A is connected to n inputs
of B, where n is the number of inputs of B, iB , divided by the number of
outputs of A, oA :

n =
iB
oA

So, because n have to be an integer, iB have to be a multiple of oA. If it is
not, the Faust compiler ends with this error message :

Connection error (<:) between : . . . error position . . .

The number of outputs (2) of the first expression should

be a divisor of the number of inputs (1) of the second

expression
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The oA first inputs of B receive the outputs of A, as for the next oA inputs
of B. . . etc. . .

Note that if oA = iB , the split operator is just equivalent to the serial
operator.

3.4 Merge

Notation : A :> B

As the notation suggested it, the merge operator does the inverse com-
position than the split operator. This time, that’s the number of inputs of
B, iB , which is lower than the number of outputs of A, oA. So, the signals
from A are added on the inputs of B with the following rule. The first iB

outputs of A go to the B inputs. Then, the next iB outputs of A do the
same, and so on. . . Hence, oA has to be a multiple of iB .
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Since there’s the same kind of condition on inputs and outputs number
of the argument boxes as with the split operator, there will the same kind
of error message if those numbers aren’t compatible.

3.5 Recursive

Notation : A ∼ B

The recursive composition is the most complex one. It is useful to create
loops in a program.

This composition has restriction on number of inputs and outputs of
each of the boxes A and B. If iA and oA are the numbers of inputs and
outputs of A, and iB and oB , are the numbers of inputs and outputs of B,
you must have the following relation :

iB ≤ oA

and, oB ≤ iA

The number of inputs and outputs of the resulting box is given by :

iA∼B = iA − oB

oA∼B = oA

To understand what it does, a diagram will be more explicit than a long
explanation. A first example is given in Figure 3.1.

Note that a delay of one sample is set between the A outputs and the B
inputs to avoid infinite loops. This is represented by a circle on the diagrams.
Here’s a mathematical representation of this first example :

∀ (x1, x2) ∈ S
2, [[A ]](x1, x2) = (y1, y2)

and [[B ]](y−1

1
) = (z)

then [[A ∼ B ]](x2) = (y1, y2)
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Figure 3.1: Recursive composition, first example

Figure 3.2: Recursive composition, second example

The Figure 3.2 gives another example. In this second example we now
have :

∀ (x1, x2) ∈ S
2, [[A ]](x1, x2) = (y)

and [[B ]](y−1) = (z1, z2)

then [[A ∼ B ]]( ) = (y)

3.6 Precedence

Because of the priority of some operators against some others, you can
sometime trim the expressions of its parenthesis. The precedence for each
operator is given in the next table, in the decreasing order, so the first is
the most priority :

Priority Symbol Name

3 ~ recursive
2 , parallel
1 :, <:, :> serial, split, merge
0 +, -, *, /, . . . arithmetic operators
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So instead of

A = (B,C):>(D~E) ;

you can just write

A = B,C :> D~E ;

But note that the parenthesis clarify the expression so help in maintaining
the code.

To understand very well how the expression you wrote will be interpreted
by the compiler, you also need to know the associativity of the operators :

Symbol Name Associativity

~ recursive Left
, parallel Right

:, <:, :> serial, split, merge Right
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Structure of a Faust program

A Faust program is a signal processor you can represent by a block-
diagram. Thus, you should first draw the block-diagram and then transcript
it in Faust language. But in Faust, you only handle boxes, no wire. The
connections are determined by the composition operators, that is the way
the boxes are combined to make a block-diagram.

In practice, a Faust program is a unordered sequence of definitions. Only
one definition is required : the definition of process. All others are optional.

4.1 Expression and definition

A Faust definition will just provide a shortcut for a Faust expression. A
Faust expression can be :

• a primitive box,

• a combination of Faust expressions via the composition operators.

A Faust expression can be considered as a block-diagram. Then a Faust
definition begins with the name you want to give to this block-diagram, that
we’ll call box name. Then comes the symbol ‘ = ’, the Faust expression, and
finally a semicolon ‘ ; ’ :

box name = expression ;

A box name has to begin with a letter, upper or lower-case, and can contain
some figures and underscores ‘ ’. The expression can be written on several
lines. And the order of the definitions doesn’t matter. You can use a box-
name that is defined anywhere, before or after its use. Just beware not to
make any recursive definition.

27
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In fact, making a definition is just giving a name to a piece of a bigger
expression. It is also to consider a block-diagram as a single box. The block-
diagram the Faust program describes is a combination of such boxes. This
global block-diagram is defined by the definition of process. Therefore, a
Faust program must always have this definition, just as a C or C++ program
must have a main function.

The definitions are just shortcuts means that each occurrence of a box-
name in expressions are replaced by their associated expression at compila-
tion. A Faust program is really described by the definition of process you
get after this substitution mechanism. The process box can be split up in
boxes, from one to many. Thus, there’s always a lot of ways to write a Faust
program. The unused definitions are ignored.

Remember that the definition mechanism is just a simple naming mech-
anism, very different of the naming mechanism of C++ that is in fact an
addressing mechanism that links a name to a memory address. There’s
here nothing comparable. This also explains why you can’t use recursive
definitions, eg :

A = B;

B = A;

process = A:B;

This will produce the following error message at compilation :

example.dsp:1: recursive definition of BoxIdent[B]

You need the recursive composition operator ~to do something recursive.
In the same way, you can’t have multiple definitions or re-definitions of a
name. You cannot write :

x = 1;

x = 2;
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In that case, the Faust compiler will use the first definition, but will show
no error nor warning.

4.2 Comments

To make your source code readable, you may want to add some comments
to it. You can use the common C++-like comments // and /* ... */. The
first syntax makes uninterpreted all the characters up to the end of the
line. The second one allows you to make multiple lines comments. All the
characters between /* and */ will not be ridden by the compiler. Note that
such comments are not written in the C++ output file.

4.3 Abstraction

An abstraction is a way to describe a generic combination of boxes.

abstraction name(box1, box2, . . . ) = expression ;

Where the expression is a composition of the box1, box2, and maybe other
boxes. Here’s an example of what can be done with abstraction :

A(x,y) = (x,y):(y,x) ;

Then it can be used with some boxes, for example B and C :

A(x,y) = (x,y):(y,x) ;

B = ... ; // definition of B

C = ... ; // definition of C

D = A(B,C) ;

That will define the D box this way :

Note that you can’t define a default value as in C++ functions. If you
use already defined boxes as formal parameters (box1 . . . ), their definition
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will – locally – not be used. The formal parameters names locally mask any
definition with the same name.

You can use some already defined boxes in the definition of the abstrac-
tion.

4.4 Syntactic sugar

Some Faust expressions can be written in a more simple way. The math
operators provided as boxes can be used with a more natural syntax. Fur-
thermore, the Faust boxes can be used as functions so a function syntax,
with parenthesis, is also available.

The math primitives + - * / % can be used in two other ways. Here is
the first alternative notation with the / primitive :

A / B

m
( A , B ) : /

The second one would often be used with a constant :

/( A )

m
( , A ) : /

This notation also works for the boxes you define. For example, let’s
have two definitions :

sinus = ffunction(float sinus(float), <math.h>, "");

i = +(0.1) ~ ;

then the following syntax can be used :

process = sinus(i);

which is equivalent to :

process = i:sinus;

When the box used as function has several inputs, they are considered as
arguments, separated with comma.
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Compilation

The faust compiler will build a C++ file from the program you wrote and
from a wrapper file you specify, that will encapsulate your Faust program
in a bigger C++ environment.

5.1 Generated C++ code

The Faust program is described in a single C++ class called mydsp that
inherits of the virtual class dsp. The mydsp class always contains a method
called compute(), and if needed two methods buildUserInterface() and
init().

The compute() method begins with some declarations and initialisa-
tions, and then there’s a loop for. The treatment is mainly done in this
loop. The aim of this method is to fill the sound-buffer. Thus the number
of iterations for this loop is the size of the buffer.

The values that come from the user-interface are constant during this
loop for stability reasons. Then, if you can change the size of this buffer,
remember that the bigger the buffer is the less your application is reactive.

Faust tries to simplify the numeric expressions but it sometimes fail and
some numeric expressions are not simplified. It depends on the way you
wrote the Faust expression. So you should try different orders and positions
for parenthesis in order to gather all numeric parts of an expression.

5.2 Command-line options

The Faust compiler v1.0a admits some command-line options that allow
you to set the way the Faust compiler will process the Faust source file. You
can try faust -h at prompt to get the list of available options. The most
basic command line would be faust filename.dsp.

31
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-v This option prints the compiler version information.

-d This option will verbose the compilation process with details, including
the given Faust source file.

-a filename This option can be used to specify a C++ wrapper file. An
architecture filename must be given as parameter. If no wrapper file
is given, the Faust compiler only produces the C++ class.

-o filename This option is used to set the C++ output filename. If no file-
name is given, the Faust compiler just print the resulting C++ source
code on the current output.

-ps It will produce a PS file that is the block-diagram representation of the
Faust program.

-svg It will produce a SVG file that is the block-diagram representation of
the Faust program.

Here’s an example :

# faust -a oss-gtk.cpp -o rev.cpp rev.dsp

That line will compile the reverb.dsp Faust file into the reverb.cpp C++ file,
using the architecture/oss-gtk.cpp wrapper file.

5.3 Wrapper files

There’s 10 main wrapper files :

alsa-gtk The sound driver is ALSA (Advanced Linux Sound Architecture :
http://www.alsa-project.org). The graphic user interface is GTK
(Gimp Tool-Kit : http://www.gtk.org).

jack-gtk The sound driver is Jack (Jack Audio Connection Kit : http:

//jackit.sourceforge.net). The graphic user interface is GTK.

jack-wx The sound driver is Jack. The graphic user interface is cross-
platform wxWindows (http://www.wxwindows.org).

minimal Just the compilable C++ file. The difference with no wrapper file
is that the virtual class dsp of which mydsp inherits is included in the
C++ file to make it ready-to-compile. This wrapper is handy to use
the stream processor as a module in a bigger C++ program.

oss-gtk The sound driver is OSS (Open Sound System : http://www.

opensound.com). The graphic user interface is GTK.
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oss-wx The sound driver is OSS. The graphic user interface is wxWindows.

pa-gtk The sound driver is cross-platform PortAudio (http://www.portaudio.
com). The graphic user interface is GTK.

pa-wx The sound driver is cross-platform PortAudio. The graphic user
interface is wxWindows.

plot There’s no sound driver nor graphic user interface. It displays the
output values in a terminal. The graphical elements (sliders) can be
set with the command line options, by preceding the slider names with
‘ -- ’. If the name contains spaces, you must use single quotes ‘ ’ ’ to
bound the slider name. The special option --n let you choose the
number of samples you want to display.

sndfile There’s no sound driver nor graphic user interface. This wrapper
handle sound files. You must specify the input and output filenames.

The wrapper files are C++ files. You must add ‘.cpp’ to their names to
use them.

5.4 How to compile the C++ file

It’s a good idea to write a Makefile if you have a Make program on your
system. You will have to add some specific commands in the compilation
command-line, which depends on the wrapper file you choose. You can
consult the Makefile of the examples directory of your Faust distribution to
see how the examples are compiled. Here is the standard command line for
GNU compiler gcc :

g++ -Wall -O3 -lm libs source-file.cpp -o binary-file

where source-file is the name of the C++ file generated by Faust, and binary-

file is the name of the binary file (executable) you will obtain. libs depends
on the wrapper file you used. You must concatenate the corresponding
options to build the libs statement :

Wrapper types Parameters

Alsa -lpthread -lasound

Oss -lpthread

Jack -ljack

PortAudio -lpthread -lportaudio

SoundFile -lsndfile

Gtk ‘gtk-config --cflags --libs‘

wxWindows ‘wx-config --cflags --libs‘
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The wrapper files minimal and plot don’t need any specific libraries.

Beware to link the files required by some ffunction(). The file to link
should be notified in a comment /* Link with ... */ at the beginning
of the C++ file (see section 2.6, page 15).
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Examples
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Chapter 6

Oscillators and signal

generators

This chapter presents some oscillators that will be used, then, to built
some synthesisers.

6.1 Square wave oscillator

Presentation

A symmetric square wave oscillator is the most basic generator that can
be done with Faust. An asymmetric one, with a customisable cyclic ratio is
more interesting.

Faust source code

//---------------------------------1

// A square wave oscillator2

//---------------------------------3

4

T = hslider("Period",1,0.1,100.,0.1); // Period (ms)5

N = 44100./1000.*T:int; // The period in samples6

a = hslider("Cyclic ratio",0.5,0,1,0.1); // Cyclic ratio7

i = +(1)~%(N):-(1); // 0,1,2...,n8

9

process = i,N*a : < : *(2) : -(1) ;10

Block-diagram

See figure 6.1, page page 38.

Output

See figure 6.2, page 39. The command-line was :

37
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Figure 6.1: Block diagram representation of the Faust program square.dsp
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# ./square --’Cyclic ratio’ 0.2 --’Period’ 1 --n 100

The period is about 44 samples, ie 44×1000/44100 ≈ 1ms. During a period,
the output signal is 1 for 8 samples, ie for 20% of the samples. This is the
cyclic ratio that was expected.
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Figure 6.2: 100 first output samples of the oscillator, at 442 Hz

Graphic user interface

The figure 6.3 shows the user interface it produces with the oss-gtk.cpp
wrapper file.

Figure 6.3: GUI of square.dsp

Comments and explanations

For this oscillator we simply count the samples to determine both the
period and the number of samples that are set to 1 from the cyclic ratio.
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Therefore, we first provide the period in milliseconds with a slider T (line 5),
and then in number of samples with N (line 6). See figure 6.4.

T = hslider("Period",1,0.1,100.,0.1); // Period (ms)

N = 44100./1000.*T:int; // The period in samples

Figure 6.4: N sub-block-diagram

Line 7, the cyclic ratio can be chosen by the user. This is the percentage
of samples set to 1 during a period. The default value 0.5 will generate a
symmetric square wave. See figure 6.5.

a = hslider("Cyclic ratio",0.5,0,1,0.1); // Cyclic ratio

Figure 6.5: a sub-block-diagram

Line 8, there’s an incremental counter that runs from 0 to the number
of samples in a period minus 1. See figure 6.6.

i = +(1)~%(N):-(1); // 0,1,2...,n

Finally, line 10, the process is defined as the comparison between the
output streams from the counter i and the number of samples that must
be set to 1, ie the output stream of N*a. Before this number of samples is
raised, the output is 1. After, but during the period, the output is 0. To
adjust this output to the whole possible range [−1; 1], i.e. to normalize, it
is multiplied by 2, and then diminished of 1. See figure 6.7
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Figure 6.6: i sub-block-diagram

process = i,N*a : < : *(2) : -(1) ;

Figure 6.7: process block-diagram

The signal we generate has one main flaw. The period converted in whole
number of samples. So the signal may not have the exact expected period.
We could have implement a compensation mechanism on several periods.
But such a mechanism would have produce some periods of variable duration
(i.e. a frequency modulation) that induces some uncontrolled additional
harmonics in the signal.

6.2 Harmonic oscillator

Presentation

This oscillator is the basic sinusoidal oscillator. It uses a rdtable to store
some values of the sin function in order to avoid their calculation during the
process. These values are then read at the speed that is computed from the
frequency parameter. It is supposed here that the sampling rate is 44 100 Hz.

Faust source code

Here’s the Faust source code e13 osc.dsp :
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//-----------------------------------------------1

// Sinusoidal Oscillator2

//-----------------------------------------------3

4

// Mathematical functions & constants5

//------------------------------------6

sin = ffunction(float sin (float), <math.h>, "");7

floor = ffunction(float floor (float), <math.h>, "");8

PI = 3.1415926535897932385;9

10

// Oscillator definition11

//--------------------------12

tablesize = 40000 ;13

samplingfreq = 44100. ;14

15

time = (+(1)~ ) - 1; // O,1,2,3,...16

sinwaveform = time*(2*PI)/tablesize : sin;17

18

decimal = <: -(floor);19

phase(freq) = freq/samplingfreq :20

(+ : decimal) ~ : *(tablesize) : int ;21

osc(freq) = phase(freq) : rdtable(tablesize,sinwaveform);22

23

// User interface24

//----------------25

vol = hslider("volume", 0, 0, 1, 0.001);26

freq = hslider("freq", 400, 0, 15000, 0.1);27

28

//----------------29

process = osc(freq) * vol;30

Block-diagram

See figure 6.8, page 43.

Output

See figure 6.9, page 44. We used the plot wrapper file to get the values.
This is an easy way to debug when the signal processor has no input. Here’s
the command lines we typed :

# faust -a plot.cpp -o e13 osc.cpp e13 osc.dsp

to convert the Faust program in a C++ program. Then :

# g++ -Wall -O3 -lm -lpthread e13 osc.cpp -o e13 osc
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Figure 6.8: Block-diagram representation of the Faust program e13 osc.dsp
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to compile the C++ program. The list of flags depends on the wrapper file
you used. For example, if you choose a GTK interface, you’ll need the GTK
libraries.

Finally, we typed :

# ./e13 osc --Frequency 442 --n 250 > sinus.dat

to launch the program and keep the output values in the file sinus.dat. Then,
GnuPlot made this graphical representation of the array of values.
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Figure 6.9: 250 first output samples of the oscillator, at 442 Hz

Generated C++ source code

Only the code of the class mydsp is given here. This is the wrapper
independent part of the resulting file. The processing function is compute().
You might understand it even if you’re unfamiliar with C++.

class mydsp : public dsp {1

private:2

class SIG0 {3

private:4

int R1 0;5

public:6

virtual int getNumInputs() { return 0; }7

virtual int getNumOutputs() { return 1; }8

void init(int samplingRate) {9

R1 0 = 0;10

}11
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void fill (int count, float output[ ]) {12

for (int i=0; i<count; i++) {13

R1 0 = (R1 0 + 1);14

output[i] = sin((((R1 0 - 1) ∗ 6.283185) / 40000));15

}16

}17

};18

19

float fslider0;20

float R0 0;21

float fslider1;22

float ftbl0[40000];23

public:24

virtual int getNumInputs() { return 0; }25

virtual int getNumOutputs() { return 1; }26

virtual void init(int samplingRate) {27

fslider0 = 0.0;28

R0 0 = 0.0;29

fslider1 = 400.0;30

SIG0 sig0;31

sig0.init(samplingRate);32

sig0.fill(40000,ftbl0);33

}34

virtual void buildUserInterface(UI∗ interface) {35

interface→openVerticalBox("");36

interface→addHorizontalSlider("volume", &fslider0,37

0.0, 0.0, 1.0, 1.000000e-03);38

interface→addHorizontalSlider("freq", &fslider1,39

400.0, 0.0, 15000.0, 0.1);40

interface→closeBox();41

}42

virtual void compute (int count, float∗∗ input, float∗∗ output)43

{44

float∗ output0 = output[0];45

float ftemp0 = fslider0;46

float ftemp1 = (fslider1 / 44100.0);47

for (int i=0; i<count; i++) {48

float ftemp2 = (R0 0 + ftemp1);49

R0 0 = (ftemp2 - floor(ftemp2));50

output0[i] = (ftbl0[int((R0 0 ∗ 40000))] ∗ ftemp0);51

}52

}53

};54

Graphic user interface

The figure 6.10 shows the user interface it produces with the oss-gtk.cpp
wrapper file.

Comments and explanations

We can already appreciate the compactness of the Faust code compared
to the block diagram, or the C++ code. Then, we can observe that the
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Figure 6.10: GUI of e13 osc.dsp

functional specifications are satisfied : this is an harmonic oscillator, we can
choose the frequency, and it uses a table to store the sinus values. Note that
the graph of figure 6.9 is graduated with samples. It means that the period,
and then the frequency, have to be calculated. Actually, we observed the
expected frequency (442 Hz in this example).

First we needed the sinus function, so we took it from the standard C++

library math.h. This is the first line of the Faust program :

sin = ffunction(float sin(float), <math.h>, "");

The name that will be replaced by the ffunction expression is sin. The
box it represents acts exactly as sin function. See figure 6.11.

Figure 6.11: sin sub-block-diagram of e13 osc.dsp

The C++ floor function will also be used. So a similar definition is
written line 8. See figure 6.12.

Figure 6.12: floor sub-block-diagram of e13 osc.dsp

Line 9, we defined the constant π (see figure 6.13) :

PI = 3.1415926535897932385;
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Figure 6.13: PI sub-block-diagram of e13 osc.dsp

Then we need two more constants that will be the size of the table in
which we’ll save the values of sinus :

tablesize = 40000;

The table-size doesn’t really matter, and you can have good results even
with a very smaller table. Then the sampling-rate constant is defined :

samplingfreq = 44100.;

See figure 6.14. Note that the table-size is an integer, whereas the sampling
frequency is a float.

Figure 6.14: tablesize and samplingfreq sub-block-diagrams

Line 16, we defined an ‘infinite’ incremental counter that will give the
number of samples from 0 to n :

time = (+(1)~ ) - 1; // O,1,2,3,...

The output of time is an integer. It just add 1 to the previous value of the
output. At the first iteration, the delay of one sample due to the recursive
operator (see section 3.5, page 24) will set to 0 the input of the +(1) box
because signals are causal ones. Then the first output of the block +(1)~ is
0 + 1 = 1. So this block is followed by minus 1 to reset it to 0 at beginning.
The incrementation cannot be infinite. When the maximal integer value
is reached, the output jump to the maximal negative value, and increment
again. Note that the +(1) syntax provides a box that adds 1 to the input
signal. This is a sweetened syntax for ,1:+. See figure 6.15.

Line 17, we defined the stream that will be used to feed the table. We
want to have the values of sinus for a whole period stored in the table. Then
we divide 2π by the table-size and we use time as variable. Thus the table
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Figure 6.15: time sub-block-diagram of e13 osc.dsp

we’ll be filled we these values :
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where n is the size of the table. The sin function is used as a box (see
figure 6.16) :

sinwaveform = time*(2*PI)/tablesize : sin ;

Figure 6.16: sinwaveform sub-block-diagram of e13 osc.dsp

The table we’ll be read with a read-index that we must compute. The
matter is that we always read the table values at the sampling frequency.
Therefore, to generate any frequency, we must skip some values while reading
the table. Thus the read-index is an incremental counter which step depends
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on the frequency the user decided to generate. Moreover, the read-index
mustn’t exceed the table-size. So we will first figure a ratio between 0 and
1.0 that we’ll next multiply by the size of the table. This ratio we’ll be
incremented of a step we must figure too, and that depends on frequency.

After incrementation, the ratio may go over 1.0. So we first defined a
box, line 19, that only keeps the decimal value of a national number, which
is obviously between 0 and 1.0 :

decimal = <: -(floor);

The floor box gives the largest integer not greater the value of the input
stream. In C++ floor(6.04) returns 6.0. Note that the -(floor) block
has two inputs. Then the split operator ‘ <: ’ spread the output of the wire
box on those two inputs. See figure 6.17.

Figure 6.17: decimal sub-block-diagram of e13 osc.dsp

Line 20, we defined an abstraction with one argument freq :

phase(freq) = freq/samplingfreq :

(+ : decimal)~ : *(tablesize) : int ;

When this abstraction will be used, freq has to be replaced by the definition-
name of the block that defines the frequency. As explained before, the
incrementing step is freq/samplingfreq. This step increments a value
for each sample. This value is then translated between 0 and 1.0 with the
decimal block. The obtained ratio is multiplied by the table-size and casted
to int to make a valid read-index. Then after i iterations, i.e. samples, the
value the table gives with this read-index is :

sin(2π ·
i

n
·

f

Fs

· n) = sin(2π · f ·
i

Fs

)

where f is the frequency given by freq, Fs is the sampling-frequency and
n the table-size. The time in seconds is given by the number of samples
multiplied by the duration of one sample, i.e. the sampling period 1/Fs.
Thus, the output signal will be a pure sinusoidal signal which frequency is
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Figure 6.18: phase(freq) sub-block-diagram of e13 osc.dsp

f . See figure 6.18. The freq is grayed because this is the argument of the
phase abstraction.

Line 22, the oscillator is defined as an abstraction too. It takes the
same argument freq. As described before, we make table of sin values with
rdtable(tablesize,sinwaveform), and we then read it with the read-
index phase(freq).

osc(freq) = phase(freq) : rdtable(tablesize,sinwaveform);

Note that the syntax used here for the rdtable is equivalent to :

(tablesize,sinwaveform): rdtable

The third input of the rdtable is connected to phase(freq). See figure 6.19.

Figure 6.19: osc(freq) sub-block-diagram of e13 osc.dsp

Finally, the user interface is defined with two hslider. The first one,
line 26, is the volume of the output signal.

vol = hslider("volume", 0, 0, 1, 0.001);

This is just a factor between 0 and 1.0. The default value, that is set when
the program is launched, is 0. Thus the user will have to move the slider to
hear something.
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Line 27, the second slider is for the frequency :

freq = hslider("freq", 400, 0, 15000, 0.1);

Here the lowest frequency allowed by the interface is 0 Hz. This has no
interest for two reasons. First, we can’t hear frequencies lower than about
15 Hz. Then, because the table only contains 40,000 values. So even if we
read one value at each sample, we’ll get an output signal frequency higher
than 1 Hz.

Finally, the global process is defined by :

process = osc(freq) * vol;

We used the slider freq for the argument of the abstraction osc( ), and the
output signal is multiplied by the value the slider vol emits. See figure 6.20.

Figure 6.20: process block-diagram of e13 osc.dsp

6.3 Noise generator

Presentation

This example presents two way to make some noise. The first one uses the
C++ random() function. The second one uses a simple function that based
on the int property. Because integers can’t be infinite, if you increment
one, at a moment it will wrap to a negative number, and restart to increase.
If you increment this integer of a non-constant value and big enough, you’ll
have a pseudo-randomised numbers sequence.

The Faust program we’ll do compares this to noises. The user interface
has only one button that let the user switch between the two noises.

Faust source code

//-----------------------------------------------1

// Two noises compared2

//-----------------------------------------------3

4
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RANDMAX = 2147483647;5

6

random1 = ffunction(int random (), <stdlib.h>, "");7

noise1 = (random1 << 1) * (1.0/RANDMAX);8

9

random2 = (*(1103515245)+12345) ~ ;10

noise2 = random2 * (1.0/RANDMAX);11

12

compare(a,b) = (a*(1-button("Switch")) +13

b*button("Switch"));14

15

process = compare(noise1, noise2) *16

hslider("volume", 0, 0, 1, 0.01) <: , ;17

Block-diagram

See figure 6.21, page 53.

Output

See figure 6.22, page 54. There’s in fact two output streams, but because
they are identical, only one has been represented. The first graph represents
the output when the button is unclicked (with volume set to 0.5), ie the
output of the noise1 block-diagram. The second graph, figure 6.23, page 54
shows the output when the button is clicked.

Graphic user interface

The figure 6.24 shows the user interface it produces with the oss-gtk.cpp
wrapper file.

Comments and explanations

The first algorithm uses the random() C++ function. In the Faust pro-
gram, it is used in the noise1 block-diagram. The second one is more rustic.
It consists in incrementing a number of a big variable value that will make
wrap the integer to negative values, and so on. This algorithm should use
less resources because there’s no call to any external function.

The compare abstraction is exactly the equivalent of the select2 box
that could have been used instead. The output of the button("Switch")

box is 0 when the button is unclicked, and 1 when it is clicked. Therefore,
the output of compare(a,b) is a when the button is unclicked, and b else.

The output of the resulting block-diagram of compare applied to the two
noises is then multiplied by a volume factor that is interfaced with a slider.
The output is split in two streams, with the split composition operator <:

to have a stereo output. The two channels (left and right) are identical.
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Figure 6.21: Block diagram representation of the Faust program 2noises.dsp
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Figure 6.22: 500 first values from 2noises.dsp, with ‘Switch’ button unclicked
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Figure 6.23: 500 first values from 2noises.dsp, with ‘Switch’ button clicked

Figure 6.24: GUI of 2noises.dsp
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Karplus-Strong

7.1 Presentation

The KS algorithm was presented by Karplus and Strong in 1983 [Roa96].
This algorithm can generate metallic picked-string sounds, and, by exten-
sion, some metallic sounds (drums, strings. . . ). It has been introduced in a
chipset called Digitar.

7.2 Faust source code

Here’s the Faust source code e05 karplus strong.dsp :

//-----------------------------------------------1

// Karplus - Strong2

//-----------------------------------------------3

4

// noise generator5

//---------------------6

random = (*(1103515245)+ 12345) ~ ;7

RANDMAX = 2147483647;8

noise = random * (1.0/RANDMAX);9

10

// delay lines11

//---------------------12

index(n) = & (n-1) ~ +(1) ; // n = 2**i13

delay(n,d) = n, 0.0, index(n), , (index(n)-int(d))14

& (n-1) : rwtable;15

16

// trigger17

//--------18
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impulse = <: , mem : - : ( > 0.0) ;19

release(n) = + ~ ( <: , ( > 0)/n : - ) ;20

trigger(n) = impulse : release(n) : >0 ;21

22

// user interface23

//-----------------24

play(n) = button("play"):trigger(n);25

dur = hslider("duration", 128, 2, 512, 1) ;26

att = hslider("attenuation", 0, -10, 10, 0.1) ;27

28

karplus1(bt, dl, att) = noise*bt:29

( + <: delay(4096, dl-1), delay(4096, dl) )30

~ ( + : *( (1-bt)/(2+att/100)) ) : !, ;31

32

karplusStrong = karplus1(play(dur), dur, att ) ;33

34

process = karplusStrong;35

7.3 Block-diagram

The whole block-diagram is to big to be displayed on a single page. Some
definitions and a portion of code are first presented. They are used then in
the diagram of the whole process.

The figure 7.1 page 56 represents the sub-block-diagram noise.

Figure 7.1: Block-diagram of noise

The figure 7.2 page 57 represents the block-diagram of the abstraction
delay(n,d). The formal parameters n and d are grayed.
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Figure 7.2: Block-diagram of the abstraction delay(n,d)
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Figure 7.3: Block-diagram of the abstraction play(n)
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Figure 7.4: Block-diagram for part of line 31 ‘+ : *( (1-bt)/(2+att/100))’
with ‘bt’ replaced by ‘play(dur)’

Figure 7.5: Block-diagram of process
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The figure 7.3 page 58 represents the block-diagram of the abstraction
play(n).

The figure 7.4 page 59 represents the sub-block-diagram for the portion of
code of line 31 :

+ : *( (1-bt)/(2+att/100))

The figure 7.5 page 59 represents the whole block-diagram for process.

7.4 Graphic user interface

You can see, figure 7.6 page 60, the graphic user interface of the program
compiled with a GTK wrapper file.

Figure 7.6: Karplus-Strong synthesiser graphic user interface

7.5 Comments and explanations

The algorithm begins with a wave-table fed by random values. These
values are then read, modified and re-used to feed the table again. See
figure 7.7 page 60.

Figure 7.7: General principle diagram of the KS algorithm
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The most basic modifier is a mean function. Here the modifier is more
complex. There’s some specific delays in it, and it fades out the sound.

Noise generator

The table must be fed with some new noise values. Here’s the noise
generator used in the e05 karplus strong.dsp, line 7 to 9.

First, we generate an integer random value. The integers are bounded
by a maximal value and a negative minimal value. When the maximal value
is reached while incrementing a variable, it jumps to the minimal value. The
current pseudo-random integers generator uses both a multiplication and an
addition to make a non-constant increment value. See figure 7.8.

random = (*(1103515245)+ 12345) ~ ;

Figure 7.8: Sub-block-diagram for random

The parameters are chosen to avoid any periodic result. In fact, the gener-
ated sequence may be periodic after a long moment.

The sound streams in Faust are floats between −1.0 and +1.0. The
generated random stream is between the max-integer and the min-integer.
So we defined a constant RANDMAX which is used to normalize the stream
(between −1.0 and +1.0). This constant depends on the number of bits on
which the integers are coded. So it depends on the C++ compiler that will
be used.

RANDMAX = 2147483647;

noise = random * (1.0/RANDMAX);

See figure 7.1, page 56. Note that the division with RANDMAX has to involve
a float somewhere to make a float division, otherwise, we would always have
get 0. So we could have defined RANDMAX as a float and divide random directly
by RANDMAX to gain one operation. But RANDMAX is a constant. So when we
write (1.0/RANDMAX), it will be simplified by the Faust compiler. The C++

translation of this portion is :
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R3 0 = ((R3 0 * 1103515245) + 12345);

for random, and noise is then used this way :

... (R3 0 * 4.656613e-10)...

Delay lines

The recirculation-wave-table in fact uses some delay lines [Roa96]. Those
delay lines are based on rwtables.

We first implemented an incremental index that will be used to read and
write in the rwtable. It will loop-count from 0 to n−1. This index uses the
bitwise operator & instead of modulo %, so n must be a power of 2 : n = 2i.

index(n) = & (n-1) ~ +(1) ; // n = 2**i

This is an abstraction.

The delay is then defined on a rwtable :

delay(n,d) = n, 0.0, index(n), , (index(n)-int(d))

& (n-1) : rwtable;

The table is initialised with silence, i.e. the constant stream 0.0. The write
index is index(n). The read index is index(n)-int(d). n is the size of the
table and d is the delay. The read index is reset between 0 and n − 1 with
another &. See figure 7.2, page 57.

Trigger

The user will click the “Play” button for any duration. So we make a
trigger that generates a signal of controlled duration on mouse-down event.

First, we just keep a single pulse at the pulse edge. This is impulse,
line 19 :

impulse = <: , mem : - : ( > 0.0) ;

The figure 7.9 shows chronograms. The mem box add a delay of one sample
to the input signal. The difference between the original and the dephased
signal produces a signal with two pulses large of one sample at the pulse
edges. The greater-than box just let the first positive pulse.

The abstraction release(n) is used to produce a decreasing slope from
1.0 to 0 and then negative values, and of which duration is given by the
output stream of n. The slope begins when a single pulse comes to the
input.



63 7.5 Comments and explanations

Figure 7.9: Sub-block-diagram for impulse

release(n) = + ~ ( <: , ( > 0)/n : - ) ;

See figure 7.3, page 58.

This abstraction is used in trigger(n) with impulse connected to the
input, and >0 to the output. The output signal is a Heaviside unit step
which duration is controlled by the formal parameter n.

trigger(n) = impulse : release(n) : >0 ;

User interface

We first have a “play” button that will key on the sound. This button
is implemented by the abstraction play(n) :

play(n) = button("play"):trigger(n);

The output will be the one of trigger(n). The aim is just to control the
duration of the launching stream that is user event.

Two sliders are then described :

dur = hslider("duration", 128, 2, 512, 1) ;

att = hslider("attenuation", 0, -10, 10, 0.1) ;

The first one dur is the duration of the Heaviside unit step generated by
trigger. It will replace the formal parameter n in the previous abstractions.
The second one, att is an attenuation factor. It will be used in order to
alter mean used as modifier.

Whole stream processor

The KS algorithm uses the noise generated during dur as initial wave-
form. We then use two delay-lines, one with one sample time-lag more. The
mean of those two streams is done with a specific factor that depends on
the duration and the attenuation.
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karplus1(bt, dl, att) = noise*bt:

( + <: delay(4096, dl-1), delay(4096, dl) )

~ ( + : *( (1-bt)/(2+att/100)) ) : !, ;

This abstraction will be used with these parameters :

karplusStrong = karplus1(play(dur), dur, att ) ;

The abstraction isn’t necessary here. In another version, a lot of KS algo-
rithm with different parameters are launched in parallel. The abstraction
lighten the code. And remember that contrary to the C++ function call, the
Faust abstraction mechanism doesn’t increase the resources cost.

The calculation of the mean factor is represented in figure 7.4, page 59.

Finally, we just keep one of the two output signals of the delay-lines.
The other is cut withe a !.

The process, is just the karplusStrong stream processor :

process = karplusStrong;
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Appendix A

Known bugs and limitations

The following bugs and limitations have been reported for the Faust
compiler v1.0a. This list isn’t exhaustive.

A.1 Bugs

• The multiple definitions are not detected. It should be tested if they
are equivalent or at least identical.

• Some automatic casts are not performed by the Faust compiler. For
example, it lets the user make modulo (%) operations with floats, which
will produce an error at the compilation of the C++ code.

• That’s a small bug but, in the error message ERROR infering write table
type, it should be written inferring.

A.2 Limitations

• The symbolic simplification isn’t accurate enough.

• There’s no simple mechanism to generate simple sequences of numbers.

• There’s not any predefined constant. Some useful constants like π and
the sampling-rate will be predefined in the next versions.

• The error messages are not really explicit.

• The errors detected during the compilation process (not during the
parse process) cannot be localised due to the simplification mechanism.
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• When using a table (rdtable or rwtable) the index (read or write)
isn’t controlled and can be override the table size. It produces unex-
pected results or an abnormal termination of the program.

• The compiler only generates a C++ file. The user has to compile it.
The next versions should produce a wrapper-dependent Makefile that
would help compiling.
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Error messages

Here are some common error messages that the Faust compiler v1.0a is
susceptible to generate at compilation. There’s two types of errors.

First, there are some syntax errors that are detected during the parsing
operation. Those errors can be localised in the source file. So the error
message begins with the filename and the line number at which the error has
been detected. Some other errors, specific to the language can be detected
at this level.

The second type is some errors that are detected during the compilation.
The Faust compiler gathers all the definition in a single expression that will
be simplified. Therefore, it is impossible to find the origin of the error. The
generated error message will not show the localisation of the error, which
sometime makes the debugging laborious. They are qualified of wriggled
errors because of there elusiveness.

B.1 Localised errors

• test.dsp:2:parse error, unexpected IDENT

Means that an unexpected identifier as been found line 12 of the file
test.dsp. Usually, this error is due to the absence of the semi-column ‘ ; ’ at
the end of the previous line. Here is the test.dsp source code :

box1 = 11

box2 = 2;2

process = box1,box2;3

test.dsp:1:parse error, unexpected ENDDEF

The parser find the end of the definition (‘ ; ’) while searching a closing
right parenthesis.
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t = ~ (+(1);1

process = t / 2147483647.;2

• test.dsp:1:parse error, unexpected ENDDEF, expecting LPAR

The parser was expecting a left parenthesis. It identified a keyword of
the language that requires arguments.

process = ffunction;1

• test.dsp:1:parse error, unexpected RPAR

The wrong parenthesis may has been used :

process = +)1);1

The following messages may be equivalent :

test.dsp:1:parse error, unexpected RPAR, expecting LPAR
test.dsp:1:parse error, unexpected RPAR, expecting PAR

• test.dsp:1:parse error, unexpected SPLIT

The ‘ < ’ box is followed by the serial composition operator ‘ ; ’, with no
space :

process = <:+ ;1

The same confusion is possible with the merge operator and greater-than.

• test.dsp:1: undefined symbol BoxIdent[turlututu]

Happens when you use a undefined name.

process = turlututu;1

• test.dsp:1:parse error, unexpected IDENT, expecting ADD or SUB or
INT or FLOAT

Happens when you use a undefined name instead of something expected.

process = hslider("Slider 1",box,0,100,1);1

• test.dsp:18:parse error, unexpected STRING

The signals can only be numeric streams. To generate symbols, you must
translate them in numeric streams. Moreover, you can’t, for the moment,
generate a looped sequence.

process = "01001";1
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• test.dsp:1: recursive definition of BoxIdent[B]

Means that the box named B, i.e. the definition of B, is recursive. You
can’t make a recursive definition like in C++ because the definition names
are replaced by there associated expression during parsing process. To make
a recursion you must use ~, the recursive composition operator.

A = B;1

B = A;2

process = A:B;3

The message is repeated for the second line and cause another one. So here
is the complete error message :

test.dsp:1: recursive definition of BoxIdent[B]
test.dsp:1: recursive definition of BoxIdent[B]
Internal Error, box expression not recognized : BoxError

B.2 Wriggled errors

These errors are mainly type errors. Faust tries to generates some error-
free C++ code. So it checks the types needed by the different primitives
and sometimes makes itself the appropriate cast. When it fails, the Faust
compiler displays a wriggled error message.

• Error : checkInit failed for type RSEVN

On a rdtable, the read-index must be an integer. So the type is checked.
Here, nothing is specified, so the check failed.

process = rdtable;1

• Error : checkInt failed for type RKCVN

The check failed for the size of the table.

process = 10.0, 1.0, int : rdtable;1

• ERROR infering read table type, wrong write index type : RSEVN

Actually, this error message should be “inferring” and “wrong read index
type”.

process = 10, 1.0, float : rdtable;1

• ERROR infering write table type, wrong write index type : RSEVN

The same for rwtable.
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/* */, //, 29
<<, >>, 13
<, >, <=, >=, !=, ==, 13
&, |, ^, 13
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!, 11
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comparison operators, 13
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GUI, 18
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read-write table, 16
selection switch, 17
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buffer, 31
bugs, 67
button, 18
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coercion, see cast
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compilation, 31–34

C++, 33
options, 31
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:> , see merge
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recursive, 24
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ffunction, 14
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interface, see wrapper file

limitations, 67–68
literals, see constants

mem, 15

nentry, 19
numbers, see constants

operators
arithmetic, 12, 30
box, 12
composition, 21

oscillators
harmonic, 41
noise, 51
square, 37

primitives, see box
process, 27
program, 27
pure harmonic, 41

rdtable, 15
rwtable, 16

sampling-rate, 67
select2, 17
select3, 17
slider, 19
syntactic sugar, 30

table, 15–17
tgroup, 20
types, 14

vgroup, 19
vslider, 19

wrapper files, 32–33
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