
PARALLELIZATION OF AUDIO APPLICATIONS WITH FAUST

Yann Orlarey
Grame

orlarey@grame.fr

Dominique Fober
Grame

fober@grame.fr

Stephane Letz
Grame

letz@grame.fr

ABSTRACT

Faust 0.9.9.6 introduces new compilation options to automatically
parallelize audio applications. This paper explains how the auto-
matic parallelization is done and presents some benchmarks.

1 INTRODUCTION

Faust is a programming language for real-time signal pro-
cessing and synthesis designed from scratch to be a com-
piled language. Being efficiently compiled allows Faust to
be complementary to existing audio languages and to pro-
vide a viable high-level alternative to C/C++ to develop
high-performance signal processing applications, libraries
or audio plug-ins.

Until recently the computation code generated by the com-
piler was organized quite traditionally as a single sample
processing loop. This scheme works very well but it doesn’t
take advantages from multicore architectures. Moreover it
can generate code that exceeds the autovectorization capa-
bilities of current C++ compilers.

We have recently extended the compiler with two new
schemes : the vector and the parallel schemes. The vec-
tor scheme simplifies the autovectorization work of the C++
compiler by splitting the sample processing loop into sev-
eral simpler loops. The parallel scheme analyzes the depen-
dencies between these loops and adds OpenMP pragmas to
indicate those that can be computed in parallel.

These new schemes can produce interesting performance
improvements. The goal of this paper is to present these
new compilation schemes and to provide some benchmarks
comparing their performances. The paper is organized as
follows : next section will give a brief overview of Faust lan-
guage, The third section will present the three code genera-
tion schemes and the last section will introduce the bench-
marks used and the results obtained.

SMC 2009, July 23-25, Porto, Portugal
Copyrights remain with the authors

2 FAUST OVERVIEW

In this section we give a brief overview of Faust with some
examples of code.

A Faust program describes a signal processor, something
that transforms some input signals and produces some out-
put signals. The programming model used combines a func-
tional programming approach with a block-diagram syn-
tax. The functional programming approach provides a nat-
ural framework for signal processing. Digital signals are
modeled as discrete functions of time, and signal processors
as second order functions that operate on them. Moreover
Faust’s block-diagram composition operators, used to com-
bine signal processors together, fit in the same picture as
third order functions.

The Faust compiler translates Faust programs into equiva-
lent C++ programs. It uses several optimization techniques
in order to generate the most efficient code. The resulting
code can usually compete with, and sometimes outperform,
DSP code directly written in C/C++. It is also self-contained
and doesn’t depend on any DSP runtime library.

Thanks to specific architecture files, a single Faust program
can be used to produce code for a variety of platforms and
plug-in formats. These architecture files act as wrappers
and describe the interactions with the host audio and GUI
system. Currently more than 10 architectures are supported
(see Table 1) and new ones can be easily added.

alsa-gtk.cpp ALSA application + GTK
alsa-qt.cpp ALSA application + QT4
jack-gtk.cpp JACK application + GTK
jack-qt.cpp JACK application + QT4
ca-qt.cpp CoreAudio application + QT4
ladspa.cpp LADSPA plug-in
max-msp.cpp Max MSP plug-in
supercollider.cpp Supercollider plug-in
vst.cpp VST plug-in
q.cpp Q language plug-in

Table 1. Some architecture files available for Faust

In the following subsections we are giving a short and in-
formal introduction to the language through the example of

a simple noise generator. Interested readers can refer to [1]
for a more complete description.

2.1 A simple noise generator

A Faust program describes a signal processor by
combining primitive operations on signals (like
+,−, ∗, /,√, sin, cos, . . .) using an algebra of high
level composition operators [2] (see Table 2). You can
think of these composition operators as a generalization of
mathematical function composition f ◦ g.

f ∼ g recursive composition
f , g parallel composition
f : g sequential composition
f <: g split composition
f :> g merge composition

Table 2. The five high level block-diagram composition op-
erators used in Faust

A Faust program is organized as a set of definitions with at
least one for the keyword process (the equivalent of main
in C).

Our noise generator example noise.dsp only involves
three very simple definitions. But it also shows some spe-
cific aspects of the language:

random = +(12345) ~ *(1103515245);
noise = random/2147483647.0;
process = noise * vslider("noise", 0, 0,

100, 0.1)/100;

The first definition describes a (pseudo) random number
generator. Each new random number is computed by multi-
plying the previous one by 1103515245 and by adding to the
result 12345.

The expression +(12345) denotes the operation of adding
12345 to a signal. It is an example of a common technique
in functional programming called partial application: the
binary operation + is here provided with only one of its ar-
guments. In the same way *(1103515245) denotes the mul-
tiplication of a signal by 1103515245.

The two resulting operations are recursively composed
using the ∼ operator. This operator connects in a
feedback loop the output of +(12345) to the input
of *(1103515245) (with an implicit 1-sample delay)
and the output of *(1103515245) to the input of
+(12345).

The second definition transforms the random signal into a
noise signal by scaling it between -1.0 and +1.0.

Finally, the definition of process adds a simple user interface
to control the production of the sound. The noise signal is
multiplied by the value delivered by a slider to control its
volume.

2.2 Invoking the compiler

The role of the compiler is to translate Faust programs into
equivalent C++ programs. The key idea to generate efficient
code is not to compile the block diagram itself, but what it
computes.

Driven by the semantic rules of the language the compiler
starts by propagating symbolic signals into the block dia-
gram, in order to discover how each output signal can be
expressed as a function of the input signals.

These resulting signal expressions are then simplified and
normalized, and common subexpressions are factorized. Fi-
nally these expressions are translated into a self contained
C++ class that implements all the required computation.

To compile our noise generator example we use the follow-
ing command :

$ faust noise.dsp

This command generates the following C++ code on the
standard output :

class mydsp : public dsp {
private:
int iRec0[2];
float fslider0;
public:
static void metadata(Meta* m) {
}

virtual int getNumInputs() { return 0; }
virtual int getNumOutputs() { return 1; }
static void classInit(int samplingFreq) {
}
virtual void instanceInit(int samplingFreq)
{
fSamplingFreq = samplingFreq;
for (int i=0; i<2; i++) iRec0[i] = 0;
fslider0 = 0.0f;

}
virtual void init(int samplingFreq)
{
classInit(samplingFreq);
instanceInit(samplingFreq);

}
virtual void buildUserInterface(UI* interface)
{
interface->openVerticalBox("noise");
interface->declare(&fslider0, "style"

, "knob");
interface->addVerticalSlider("noise",

&fslider0, 0.0f, 0.0f, 100.0f, 0.1f);
interface->closeBox();

}

virtual void compute (int count,
float** input,
float** output)

{
float fSlow0 = (4.656613e-12f * fslider0);
float* output0 = output[0];
for (int i=0; i<count; i++) {
iRec0[0] = 12345+1103515245*iRec0[1];
output0[i] = fSlow0*iRec0[0];
// post processing
iRec0[1] = iRec0[0];

}
}

};

The generated class contains seven methods. Among these
methods getNumInputs() and getNumOutputs()
return the number of input and output signals required by
our signal processor. init() initializes the internal state
of the signal processor. buildUserInterface() can
be seen as a list of high level commands, independent
of any toolkit, to build the user interface. The method
compute() does the actual signal processing. It takes 3 ar-
guments: the number of frames to compute, the addresses of
the input buffers and the addresses of the output buffers, and
computes the output samples according to the input samples.

2.3 Generating a full application

The faust command accepts several options to control the
generated code. Two of them are widely used. The option
-o outputfile specifies the output file to be used instead of
the standard output. The option -a architecturefile defines
the architecture file used to wrap the generate C++ class.

For example the command faust -a jack-qt.cpp
-o noise.cpp noise.dsp generates a full jack appli-
cation using QT4.4 as a graphic toolkit. The figure 1 is a
screenshot of our noise application running.

Figure 1. Screenshot of the noise example generated with
the jack-qt.cpp architecture

2.4 Generating a block-diagram

Another interesting option is -svg that generates one or
more SVG graphic files that represent the block-diagram of
the program as in Figure 2.

Figure 2. Graphic block-diagram of the noise generator pro-
duced with the -svg option

It is interesting to note the difference between the block di-
agram and the generated C++ code. The block diagram in-
volves one addition, two multiplications and two divisions.
The generated C++ program only involves one addition and
two multiplications per sample. The compiler has been able
to optimize the code by factorizing and reorganizing the op-
erations.

As already said, the key idea here is not to compile the block
diagram itself, but what it computes.

3 CODE GENERATION

In this section we describe how the Faust compiler generates
its code. We will first introduce the so called scalar gener-
ation of code which was the only one until version 0.9.9.5.
Then, we will present the vector generation of code where
the code is organized into several loops that operates on vec-
tors, and finally the parallel generation of code where these
vector loops are parallelized using OpenMP directives.

3.1 Preliminary steps

Before reaching the stage of the C++ code generation, the
Faust compiler have to carry on several steps that we de-
scribe briefly here.

3.1.1 Parsing source files

The first one is to recursively parse all the source files in-
volved. Each source file contains a set of definitions and

possibly some import directives for other source files. The
result of this phase is a list of definitions: [(name1 =
definition1), (name2 = definition2), . . .]. This list is
actually a set, as redefinitions of symbols are not allowed.

3.1.2 Evaluating block-diagrams

Among the names defined there must be process, the analog
of main in C/C++. This definition has to be evaluated as
Faust allows algorithmic block-diagram definitions.

For example the algorithmic definition:

foo(n) = *(10+n);
process = par(i,3, foo(i));

Listing 1. example of algorithmic definition

will be translated in a flat block-diagram description that
contains only primitive blocks:

process = (_,10:*),(_,11:*),(_,12:*);

This description is said to be in normal form.

3.1.3 Discovering the mathematical equations

Faust doesn’t compile a block-diagram directly. It uses a
phase of symbolic propagation to first discover its mathe-
matical semantic (what it computes). The principle is to
propagate symbolic signals through the inputs of the block-
diagram in order to get, at the other end, the mathematical
equation of each output signal.

These equations are then normalized so that different block-
diagrams, but computing mathematically equivalent signals,
result in the same output equations.

Here is a very simple example where the input signal is di-
vided by 2 and then delayed by 10 samples:

process = /(2) : @(10);

This is equivalent to having the input signal first multiplied
by 2, then delayed by 7 samples, then divided by 4 and then
delayed by 3 samples.

process = *(2) : @(7) : /(4): @(3);

Both lead to the following signal equation:

Y (t) = 0.5 ∗X(t− 10)

Faust applies several rules to simplify and normalize output
signal equations. For example one of theses rules says that it

is better to multiply a signal by a constant after a delay than
before. It gives the compiler more opportunities to share
and reuse the same delay line. Another rule says that two
consecutive delays can be combined into a single one.

3.1.4 Typing the mathematical equations

The next phase is to assign types to the resulting signal equa-
tions. This will not only help the compiler to detect errors
but also to generate the most efficient code. Several aspects
are considered:

1. the nature of the signal: integer of float.

2. interval of values of the signal: the minimum and
maximum values that a signal can take

3. the computation time of the signal: the signal can be
computed at compilation time, at initialization time or
at execution time.

4. the speed of the signal: constant signals are computed
only once, low speed user interface signals are com-
puted once for every block of samples, high speed au-
dio signals are computed every samples.

5. parallelism of the signal: true if the samples of the
signal can be computed in parallel, false when the sig-
nal has recursive dependencies requiring its samples
to be computed sequentially.

3.1.5 Occurrence analysis

The role of this last preparation phase is to analyze in
which context each subexpression is used and to discover
common subexpressions. If an expensive common subex-
pression is discovered, an assignment to a cache variable
float fTemp = <common subexpression code>; is gener-
ated, and the cache variable fTemp is used in its enclosing
expressions. Otherwise the subexpression code is used in-
lined.

The occurrence analysis proceeds by a top-down visit of the
signal expression. The first time a subexpression is visited,
it is annotated with a counter. Next time, the counter will be
increased and its visit skipped.

Subexpressions with several occurrences are candidates to
be cached in variables. However in some circumstances ex-
pressions with a single occurrence also need to be cached
if they occur in a faster context. For example, a constant
expression occurring in a low speed user interface expres-
sion or a user interface expression occurring in a high speed
audio expression will generally require to be cached.

Only after this phase can the generation of the C++ code
start.

3.2 Scalar Code generation

The generation of the C++ code is made by populating a
klass object (representing a C++ class), with strings repre-
senting C++ declarations and lines of code. In scalar mode
these lines of code are organized in a single sample compu-
tation loop, while they can be splitted in several loops with
the new vector and parallel schemes.

The code generation basically relies on two functions: a
translation function [[]] that translates a signal expression
into a string of C++ code, and a cache function C() that
checks if a variable is needed.

We don’t have enough room to go in too much details but
here is the translation rule for the addition of two signal ex-
pressions:

[[E1]]→ S1
[[E2]]→ S2

[[E1 + E2]]→ C(′′(S1 + S2)′′)

It says that to compile the addition of two signals we com-
pile each of these signals and concat the resulting strings
with a + sign in between. The string obtained is passed to
the cache function that will check if the expression is shared
or not.

Let’s say that the string passed to the cache func-
tion C() is (input0[i] + input1[i]). If the ex-
pression is shared, the cache function will allocate
a fresh variable name fTemp0, add the line of code
float fTemp0 = (input0[i] + input1[i]); to the klass
object and return fTemp0 as a string to be used when com-
piling enclosing expressions. If the expression is not shared
it will simply return the string (input0[i] + input1[i])

unmodified.

To illustrate this, let’s take two simple examples. The first
one converts a stereo signal into a mono signal by adding
the two input signals:

process = +;

In this case (input0[i] + input1[i]) is not shared and the
generated C++ code is the following:

virtual void compute (int count,
float** input,
float** output)

{
float* input0 = input[0];
float* input1 = input[1];
float* output0 = output[0];
for (int i=0; i<count; i++) {

output0[i] = (input0[i] + input1[i]);
}

}

But when the sum of the two input signals is duplicated on
two output signals as in:
process = + <: _,_;

then (input0[i] + input1[i]) will be cached in a tempo-
rary variable:
virtual void compute (int count,

float** input,
float** output)

{
float* input0 = input[0];
float* input1 = input[1];
float* output0 = output[0];
float* output1 = output[1];
for (int i=0; i<count; i++) {
float fTemp0 = (input0[i] + input1[i]);
output0[i] = fTemp0;
output1[i] = fTemp0;

}
}

3.3 Vector Code generation

Modern C++ compilers are able to do autovectorization, that
is to use SIMD instructions to speedup the code. These in-
structions can typically operate in parallel on short vectors
of 4 simple precision floating point numbers thus leading
to a theoretical speedup of x4. Autovectorization of C/C+
programs is a difficult task. Current compilers are very sen-
sitive to the way the code is arranged. In particular too com-
plex loops can prevent autovectorization. The goal of the
new vector code generation is to rearrange the C++ code
in a way that facilitates the autovectorization job of the C++
compiler. Instead of generating a single sample computation
loop, it splits the computation into several simpler loops that
communicates by vectors.

The vector code generation is activated by passing the
--vectorize (or -vec) option to the Faust compiler. Two
additional options are available: --vec-size <n> con-
trols the size of the vector (by default 32 samples) and
--loop-variant 0/1 gives some additional control on the
loops.

To illustrate the difference between scalar code and vector
code, let’s take the computation of the RMS (Root Mean
Square) value of a signal. Here is the Faust code that com-
putes the Root Mean Square of a sliding window of 1000
samples:
// Root Mean Square of n consecutive samples
RMS(n) = square : mean(n) : sqrt ;

// Square of a signal
square(x) = x * x ;

// Mean of n consecutive samples of a signal
// (uses fixpoint to avoid the accumulation of
// rounding errors)
mean(n) = float2fix : integrate(n) :

fix2float : /(n);

// Sliding sum of n consecutive samples
integrate(n,x) = x - x@n : +~_ ;

// Convertion between float and fix point
float2fix(x) = int(x*(1<<20));
fix2float(x) = float(x)/(1<<20);

// Root Mean Square of 1000 consecutive samples
process = RMS(1000) ;

The compute() method generated in scalar mode is the fol-
lowing:

virtual void compute (int count,
float** input,
float** output)

{
float* input0 = input[0];
float* output0 = output[0];
for (int i=0; i<count; i++) {

float fTemp0 = input0[i];
int iTemp1 = int(1048576*fTemp0*fTemp0);
iVec0[IOTA&1023] = iTemp1;
iRec0[0] = ((iVec0[IOTA&1023] + iRec0[1])

- iVec0[(IOTA-1000)&1023]);
output0[i] = sqrtf(9.536744e-10f *

float(iRec0[0]));
// post processing
iRec0[1] = iRec0[0];
IOTA = IOTA+1;

}
}

The -vec option leads to the following reorganization of the
code:

virtual void compute (int fullcount,
float** input,
float** output)

{
int iRec0_tmp[32+4];
int* iRec0 = &iRec0_tmp[4];
for (int index=0; index<fullcount; index+=32)
{

int count = min (32, fullcount-index);
float* input0 = &input[0][index];
float* output0 = &output[0][index];
for (int i=0; i<4; i++)
iRec0_tmp[i]=iRec0_perm[i];

// SECTION : 1
for (int i=0; i<count; i++) {
iYec0[(iYec0_idx+i)&2047] =

int(1048576*input0[i]*input0[i]);
}
// SECTION : 2
for (int i=0; i<count; i++) {
iRec0[i] = ((iYec0[i] + iRec0[i-1]) -

iYec0[(iYec0_idx+i-1000)&2047]);

}
// SECTION : 3
for (int i=0; i<count; i++) {

output0[i] = sqrtf((9.536744e-10f *
float(iRec0[i])));

}
// SECTION : 4
iYec0_idx = (iYec0_idx+count)&2047;
for (int i=0; i<4; i++)

iRec0_perm[i]=iRec0_tmp[count+i];
}

}

While the second version of the code is more complex,
it turns out to be much easier to vectorize efficiently
by the C++ compiler. Using Intel icc 11.0, with the
exact same compilation options: -O3 -xHost -ftz
-fno-alias -fp-model fast=2, the scalar version
leads to a throughput performance of 129.144 MB/s, while
the vector version achieves 359.548 MB/s, a speedup of x2.8
!

scalar code generator

vector code generator
(loop separation)

parallel code generator
(OpenMP directives)

Figure 3. Faust’s stack of code generators

The vector code generation is built on top of the scalar code
generation (see figure 3). Every time an expression needs to
be compiled, the compiler checks to see if it needs to be in
a separate loop or not. It applies some simple rules for that.
Expressions that are shared (and are complex enough) are
good candidates to be compiled in a separate loop, as well
as recursive expressions and expressions used in delay lines.

The result is a directed graph in which each node is a com-
putation loop (see Figure 4). This graph is stored in the klass
object and a topological sort is applied to it before printing
the code.

L1

L4

L7

L8

L6

L2

L9

L3

L5

Figure 4. The result of the -vec option is a directed acyclic
graph (DAG) of small computation loops

3.4 Parallel Code generation

The parallel code generation is activated by passing the
--openMP (or -omp) option to the Faust compiler. It implies
the -vec options as the parallel code generation is built on
top of the vector code generation by inserting appropriate
OpenMP directives in the C++ code.

3.4.1 The OpenMP API

OpenMP (http://wwww.openmp.org) is a well established
API that is used to explicitly define direct multi-threaded,
shared memory parallelism. It is based on a fork-join model
of parallelism (see figure 5). Parallel regions are delimited
by using the #pragma omp parallel construct. At the en-
trance of a parallel region a team of parallel threads is acti-
vated. The code within a parallel region is executed by each
thread of the parallel team until the end of the region.

#pragma omp parallel
{
// the code here is executed simultaneously by
// every thread of the parallel team
...

}

In order not to have every thread doing redundantly the exact
same work, OpemMP provides specific work-sharing direc-

#
p
rag

m
a

 o
m

p
 p

a
rallel

m
aster thread

fork

fork

join

join

#
p
rag

m
a

 o
m

p para
lle

l

Figure 5. OpenMP is based on a fork-join model

tives. For example #pragma omp sections allows to break
the work into separate, discrete sections. Each section being
executed by one thread:

#pragma omp parallel
{
#pragma omp sections
{
#pragma omp section
{

// job 1
}
#pragma omp section
{

// job 2
}
...

}

...
}

3.4.2 Adding OpenMP directives

As said before the parallel code generation is built on top
of the vector code generation. The graph of loops produced
by the vector code generator is topologically sorted in order
to detect the loops that can be computed in parallel. The
first set S0 (loops L1, L2 and L3 in the DAG of Figure 4)

contains the loops that don’t depend on any other loops, the
set S1 contains the loops that only depend on loops of S0,
(that is loops L4 and L5), etc..

As all the loops of a given set Sn can be computed in paral-
lel, the compiler will generate a sections construct with a
section for each loop.

#pragma omp sections
{

#pragma omp section
for (...) {
// Loop 1

}
#pragma omp section
for (...) {
// Loop 2

}
...

}

If a given set constains only one loop, then the compiler
checks to see if the loop can be parallelized (no recursive
dependencies) or not. If it can be parallelized, it generates:

#pragma omp for
for (...) {
// Loop code

}

otherwise it generates a single construct so that only one
thread will execute the loop:

#pragma omp single
for (...) {
// Loop code

}

3.4.3 Example of parallel code

To illustrate how Faust uses the OpenMP directives, here is a
very simple example, two 1-pole filters in parallel connected
to an adder (see figure 6 the corresponding block-diagram):

filter(c) = *(1-c) : + ~ *(c);
process = filter(0.9), filter(0.9) : +;

The corresponding compute() method obtained using the -
omp option is the following:

virtual void compute (int fullcount,
float** input,
float** output)

{
float fRec0_tmp[32+4];
float fRec1_tmp[32+4];
float* fRec0 = &fRec0_tmp[4];
float* fRec1 = &fRec1_tmp[4];
#pragma omp parallel firstprivate(fRec0,fRec1)
{

for (int index = 0; index < fullcount;

Figure 6. two filters in parallel connected to an adder

index += 32)
{

int count = min (32, fullcount-index);
float* input0 = &input[0][index];
float* input1 = &input[1][index];
float* output0 = &output[0][index];
#pragma omp single
{
for (int i=0; i<4; i++)

fRec0_tmp[i]=fRec0_perm[i];
for (int i=0; i<4; i++)

fRec1_tmp[i]=fRec1_perm[i];
}
// SECTION : 1
#pragma omp sections
{
#pragma omp section
for (int i=0; i<count; i++) {

fRec0[i] = ((0.1f * input1[i])
+ (0.9f * fRec0[i-1]));

}
#pragma omp section
for (int i=0; i<count; i++) {

fRec1[i] = ((0.1f * input0[i])
+ (0.9f * fRec1[i-1]));

}
}
// SECTION : 2
#pragma omp for
for (int i=0; i<count; i++) {
output0[i] = (fRec1[i] + fRec0[i]);

}
// SECTION : 3
#pragma omp single
{
for (int i=0; i<4; i++)

fRec0_perm[i]=fRec0_tmp[count+i];
for (int i=0; i<4; i++)

fRec1_perm[i]=fRec1_tmp[count+i];
}

}
}

}

This code appeals for some comments:

1. The parallel construct #pragma omp parallel is the
fundamental construct that starts parallel execution.
The number of parallel threads is generally the num-
ber of CPU cores but it can be controlled in several
ways.

2. Variables external to the parallel region are shared by
default. The firstprivate(fRec0,fRec1) clause in-
dicates that each thread should have its private copy of
fRec0 and fRec1. The reason is that accessing shared
variables requires an indirection and is quite ineffi-
cient compared to private copies.

3. The top level loop for (int index = 0;...)... is
executed by all threads simultaneously. The sub-
sequent work-sharing directives inside the loop will
indicate how the work must be shared between the
threads.

4. Please note that an implied barrier exists at the end
of each work-sharing region. All threads must have
executed the barrier before any of them can continue.

5. The work-sharing directive #pragma omp single in-
dicates that this first section will be executed by only
one thread (any of them).

6. The work-sharing directive #pragma omp sections

indicates that each corresponding
#pragma omp section, here our two filters, will
be executed in parallel.

7. The loop construct #pragma omp for specifies that
the iterations of the associated loop will be executed
in parallel. The iterations of the loop are distributed
across the parallel threads. For example, if we have
two threads, the first one can compute indices be-
tween 0 and count/2 and the other between count/2
and count.

8. Finally #pragma omp single in section 3 indicates
that this last section will be executed by only one
thread (any of them).

4 BENCHMARKS

To compare the performances of these three types of code
generation in a realistic situation we have implemented a
special alsa-gtk-bench.cpp architecture file that measures
the duration of the compute() method. Here is a fragment
of this architecture file:

while(running) {
audio.read();
STARTMESURE
DSP.compute(audio.buffering(),

audio.inputSoftChannels(),
audio.outputSoftChannels()

);
STOPMESURE
audio.write();
running = mesure <= (KMESURE + KSKIP);

}

The methodology is the following. The duration of the com-
pute method is measured by reading the TSC (Time Stamp
Counter) register. A total of 128+2048 measures are made
by run. The first 128 measures are considered a warm-up
period and are skipped. The median value of the following
2048 measures is computed. This median value, expressed
in processors cycles, is first converted into a duration, and
then into number of bytes produced per second considering
the audio buffer size (in our test 2048) and the number of
output channels.

This throughput performance is a good indicator. The mem-
ory bandwidth is a strong limiting factor for today’s pro-
cessors, and it has to be shared among the processors. In
other words, on a SMP machine a realtime audio program
can never go faster than the memory bandwidth. And if a
sequential program already uses all the available memory
bandwidth, there is no room for improvement. In this case a
parallel version can only perform worth.

4.1 Machines and compilers used

In order to compare the scalar code generation with the new
vector and parallel code generation, we have compiled with
Faust 0.9.9.5b2 a series of tests in three different versions.
The following commands were used :

- scal : faust -a alsa-gtk-bench.cpp
test.dsp -o test.cpp

- vec : faust -a alsa-gtk-bench.cpp -vec
-vs 3968 test.dsp -o test.cpp

- par : faust -a alsa-gtk-bench.cpp
-omp -vs 3968 test.dsp -o test.cpp

We have also used two different C++ compilers, GNU GCC
and Intel ICC :

- GCC version 4.3.2 with options : -O3
-march=native -mfpmath=sse
-msse -msse2 -msse3 -ffast-math
-ftree-vectorize. (-fopenmp added for
OpenMP).

- ICC version 11.0.074 with options : -O3 -xHost
-ftz -fno-alias -fp-model fast=2.
(-openmp is added for OpenMP).

All the tests were run on three different machines :

- vaio : a Sony Vaio SZ3VP laptop, with an Intel T7400
dual core processor at 2167 MHz, 2GB of Ram, run-
ning an Ubuntu 7.10 distribution with a 2.6.22-15-
generic kernel.

- xps : a Dell XPS machine with an Intel Q9300 quad
core processor at 2500 MHz, 4GB of Ram, running
an Ubuntu 8.10 distribution with a 2.6.22-15-generic
kernel.

- macpro : an Apple Macpro with two Intel Xeon
X5365 quad core processors at 3000 MHz, 2GB of
Ram, running an Ubuntu 8.10 distribution with a
2.6.27-12-generic kernel

4.2 Benchmark: copy1.dsp

The goal of this first test is to measure the memory band-
width. We use a very simple Faust program copy1.dsp that
simply copies the input signal to the output signal:
process = _;

The results we have obtained are summarized figure 7. The
horizontal axe corresponds to the three faust compilation
schemes : scalar , vector and parallel, combined with the
two C++ compilers : gcc and icc. The vertical axe is the
throughput : how many bytes of samples each tested pro-
gram is able to produce per second (higher values are the
better).

It is interesting to note how catastrophic the performances
of the parallel versions are. The scalar and vector versions
are quite similar with a little advantage to the scalar version.
The code generated by icc performs better. The memory
bandwidth of the Macpro is disappointing especially con-
sidering that it has to be shared by 8 cores.

How stable are these measures ? Figure 8 compares the per-
formances of copy1 (compiled with icc) on the Macpro on
5 different runs. As we can see the stability is reasonably
good.

4.3 Benchmark: freeverb.dsp

The second test is freeverb.dsp, a Faust implementation of
the Freeverb (the source can be found in the Faust distribu-
tion).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

gcc.scal gcc.vec gcc.par icc.scal icc.vec icc.par

T
ro

ug
hp

ut
 M

B
/s

Compilation option

VAIO
XPS
MAC

Figure 7. Copy1.dsp benchmark

The results are given figure 9. Here gcc gives very good
results in scalar code and outperforms icc in 2 of the 3 cases.
But the performances of gcc are still very poor on vector and
parallel code.

Despite the fact that freeverb has a limited amount of paral-
lelism, icc gives quite convincing results with a reasonable
speedup on vector and parallel code on the Vaio and the XPS
machines. It is also interesting to note that on parallel ver-
sion the 8 3GHz cores of the macpro were slower than 4
2.5Ghz cores of the XPS !

4.4 Benchmark: karplus32.dsp

Karplus32.dsp is a generalized version of Karplus-Strong
algorithm with 32 slightly detuned strings in parallel (the
source can be found in the Faust distribution). Figure 10
gives the results. Again we can see excellent performances
of gcc in scalar mode, good progression of the performances
in vector mode as well as in parallel mode for icc.

4.5 Benchmark: mixer.dsp

This is the implementation of a simple 8 channels mixer.
Each channel has a mute button, a volume control in dB,
a vumeter and a stereo pan control. The mixer has also a
volume control of the stereo output.

import("music.lib");

smooth(c) = *(1-c) : +~*(c);

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
ro

ug
hp

ut
 M

B
/s

Run

scal
vec
par

Figure 8. Stability of measures (copy1 on macpro, icc ver-
sion)

vol = *(vslider("fader", 0, -60, 4, 0.1)
: db2linear : smooth(0.99));

mute = *(1 - checkbox("mute"));

vumeter(x) = attach(x, env(x) :
vbargraph("",0,1))

with {
env = abs:min(0.99):max ~ -(1.0/SR);
};

pan = _ <: *(sqrt(1-c)), *(sqrt(c))
with {

c = (nentry("pan",0,-8,8,1)-8)/-16 :
smooth(0.99);

};

voice(v) = vgroup("voice %v",
mute :
hgroup("", vol : vumeter) :
pan);

stereo = hgroup("stereo out", vol, vol);

process = hgroup("mixer",
par(i,8,voice(i)) :> stereo);

The results of figure 11 show a real benefit for the vector-
ized version with a speedup exceeding x2 on the 3 machines.
There is also a positive impact of the parallelization even if
more limited. As usual gcc delivers good scalar code but
poor results on vectorized and OpenMP code.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

gcc.scal gcc.vec gcc.par icc.scal icc.vec icc.par

T
ro

ug
hp

ut
 M

B
/s

Compilation option

VAIO
XPS
MAC

Figure 9. Freeverb.dsp benchmark

4.6 Benchmark: fdelay8.dsp

This test implements an 8-channels fractional delay. Each
channel has a volume control in dB as well as a delay control
in fractions of samples. The interpolation is based on a fifth-
order Lagrange interpolation from Julius Smith’s Faust filter
library.

import("filter.lib");

line(i) = vgroup("line %i",fdelay5(128,d):*(g))
with{ g = vslider("gain (dB)",-60,-60,4,0.1)

: db2linear : smooth(0.995);
d = nentry("delay (samp)",10,10,128,0.1)

: smooth(0.995);
};

process = hgroup("", par(i, 8, line(i)));

The results are presented figure 12. The Macpro exhibits a
good speedup of x2.5 for its parallel version. The parallel
speedup for the XPS machine is more limited and there is
no speedup at all on the Vaio.

4.7 Benchmark: rms.dsp

The Faust source of rms.dsp was presented section 3.3. It
is a purely sequential algorithm therefore the performances
of the parallel versions are very bad. But, as figure 13 in-
dicates, the vectorization gives a real boost to the perfor-
mances, particularly on the vaio.

 0

 10

 20

 30

 40

 50

 60

 70

 80

gcc.scal gcc.vec gcc.par icc.scal icc.vec icc.par

T
ro

ug
hp

ut
 M

B
/s

Compilation option

VAIO
XPS
MAC

Figure 10. Karplus32.dsp benchmark

4.8 Benchmark: rms8.dsp

This test computes the RMS value on 8 channels in parallel.
The Faust code is :

process = par(i,8,component("rms.dsp")) ;

We obviously have a good amount of parallelism here that
icc is able to exploit as indicated by the results figure 14.
Compared to the scalar performances, the parallel version
exhibits a speedup of nearly x3 on the Mac, while the
speedup for the XPS exceed x2.5. But the record is for the
Vaio with a speedup of x2.2 !

5 CONCLUSION

We have presented two new compilation schemes recently
introduced in the Faust compiler. The vector scheme sim-
plifies the autovectorization work of the C++ compiler by
splitting the sample processing loop into several simpler
loops. The parallel scheme analyzes the dependencies be-
tween these loops and add OpenMP pragmas to indicate
those that can be computed in parallel.

Figure 15 shows the speedup obtained with the vectorized
code. With a good autovectorizing C++ compiler like In-
tel icc 11.0 we can obtain very significant improvements
in many cases. On the contrary gcc 4.3.2 was not able to
generate SIMD instructions, leading to a degradation of the
performances. We therefore highly recommend icc to com-
pile vectorized code, that is a pity considering the excellent

 0

 20

 40

 60

 80

 100

 120

gcc.scal gcc.vec gcc.par icc.scal icc.vec icc.par

T
ro

ug
hp

ut
 M

B
/s

Compilation option

VAIO
XPS
MAC

Figure 11. mixer.dsp benchmark

results of gcc on scalar code.

Following the so called Amdahl’s law, the speedup obtained
with the parallelized code is highly dependent on the quan-
tity of parallelism available (see figure 16. On purely par-
allel programs like fdelay8 and rms8 a speedup exceeding
x2.5 was observed on the mac. This is a little bit disappoint-
ing for a 8-cores machine, but in phase with its relatively
limited memory bandwidth. Here too, we recommend icc to
compile OpenMP applications.

All these results are dependent on many choices and set-
tings, in particular on compiler’s options. The options we
have retained were the best we could find, but the parame-
ters space is huge and we have only explored a small part of
it. It may be the case that the gcc results could be improved
by changing the settings. This would be good news and the
authors are interested by any suggestions on that point.

There is also a lot of possible improvements in the code gen-
erated by Faust. While it is easy to discover the whole po-
tential parallelism of a Faust program 1 , generating efficient
OpenMP programs is much more difficult due to the over-
heads introduced and the additional pressure on the shared
memory.

The trade-off between parallelism and overhead + memory
pressure is something that we will have to improve in future
versions. The fixed scheduling of the parallel tasks is also
probably far from optimal in many cases. It will be also

1 parallel programming is probably the chance of functional program-
ming languages compared to imperative languages

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

gcc.scal gcc.vec gcc.par icc.scal icc.vec icc.par

T
ro

ug
hp

ut
 M

B
/s

Compilation option

VAIO
XPS
MAC

Figure 12. fdelay8.dsp benchmark

interesting to explore the possibilities of GPGPU and their
high-level programming languages as an alternative to C++
and OpenMP.

Resources

1. http://openmp.org/

2. http://faust.grame.fr

3. http://www.intel.com/cd/software/products/asmo-
na/eng/277618.htm

6 REFERENCES

[1] Yann Orlarey, Dominique Fober, and Stephane Letz.
Syntactical and semantical aspects of faust. Soft Com-
puting, 8(9):623–632, 2004.

[2] Y. Orlarey, D. Fober, and S. Letz. An algebra for block
diagram languages. In ICMA, editor, Proceedings of
International Computer Music Conference, pages 542–
547, 2002.

 0

 100

 200

 300

 400

 500

 600

 700

 800

gcc.scal gcc.vec gcc.par icc.scal icc.vec icc.par

T
ro

ug
hp

ut
 M

B
/s

Compilation option

VAIO
XPS
MAC

Figure 13. rms.dsp benchmark

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

gcc.scal gcc.vec gcc.par icc.scal icc.vec icc.par

T
ro

ug
hp

ut
 M

B
/s

Compilation option

VAIO
XPS
MAC

Figure 14. rms8.dsp benchmark

 0

 0.5

 1

 1.5

 2

 2.5

 3

copy1 fverb karp32 mixer fdelay8 rms rms8

S
pe

ed
up

Test

VAIO
XPS
MAC

1

Figure 15. Speedup ratio between vector and scalar code
(using icc)

 0

 0.5

 1

 1.5

 2

 2.5

 3

copy1 fverb karp32 mixer fdelay8 rms rms8

S
pe

ed
up

Test

VAIO
XPS
MAC

1

Figure 16. Speedup ratio between parallel and scalar code
(using icc)

