Interfacing Pure Data with Faust

Albert GRAF
Dept. of Music Informatics, Johannes Gutenberg University
55099 Mainz, Germany,
ag@muwiinfa.geschichte.uni-mainz.de

Abstract

This paper reports on a new plugin interface for
Grame’s functional DSP programming language
Faust. The interface allows Faust programs to be
run as externals in Miller Puckette’s Pd (Pure Data),
making it possible to extend Pd with new audio ob-
jects programmed in Faust. The software also in-
cludes a script to create wrapper patches around
Faust units which feature “graph-on-parent” GUI el-
ements to facilitate the interactive control of Faust
units. The paper gives a description of the interface
and illustrates its usage by means of a few examples.

Keywords

Computer music, digital signal processing, Faust
programming language, functional programming,
Pd, Pure Data

1 Introduction

Faust is a modern-style functional language
for programming digital signal processing algo-
rithms being developed at Grame [1; 2], which
was already presented in-depth at last year’s
Linux Audio Conference [3]. Faust provides an
executable, high-level specification language for
describing block diagrams operating on audio
signals. Signals are modelled as functions of
(discrete) time and DSP algorithms as higher-
order functions operating on signals. The main
advantages of this approach over using graph-
ical block diagrams is that the building blocks
of signal processing algorithms can be combined
in much more flexible ways, and that Faust can
also serve as a formal specification language for
signal processing units.

Faust programs are compiled to efficient C+-+
code which can be used in various environ-
ments, including Jack, LADSPA, Max/MSP,
SuperCollider, VST and the programming
language. This paper reports on Faust’s plugin
interface for Miller Puckette’s Pure Data a.k.a.
Pd (http://puredata.info). The new inter-
face allows audio developers and Pd users to run
Faust programs as Pd externals, in order to test

Faust programs using Pd’s convenient graphi-
cal environment, or to extend Pd with new cus-
tom audio objects. The package also includes
a Q script faust2pd which can create wrap-
per patches featuring “graph-on-parent” GUIs
around Faust externals, which further facilitates
the interactive control of Faust units in the Pd
environment.

The software described in this paper is free
(GPL’ed). It is already included in recent
Faust releases (since version 0.9.8.6), and is
also available as a separate package faust2pd
from http://q-lang.sf.net, which includes
the puredata.cpp Faust architecture file, the
faust2pd script and supporting Pd abstrac-
tions, as well as a bunch of examples. You
can also try Faust interactively, without having
to install the Faust compiler, at Grame’s Faust
website (http://faust.grame.fr).

Because of lack of space we cannot give
an introduction to Faust and Pd here,
so the paper assumes a passing familiarity
with both. More information about these
systems can be found in the documenta-
tion available at http://faust.grame.fr and
http://puredata.info.

2 Building Faust externals

Faust Pd plugins work in much the same way
as the well-known plugin™ object (which in-
terfaces to LADSPA plugins), except that each
Faust DSP is compiled to its own Pd external.
Under Linux, the basic compilation process is
as follows (taking the freeverb module from the
Faust distribution as an example):

compile the Faust source to a C++ module
using the "puredata" architecture
faust -a puredata.cpp freeverb.dsp
-o freeverb.cpp
compile the C++ module to a Pd plugin
gt++ -shared -Dmydsp=freeverb freeverb.cpp
-o freeverb”.pd_linux

By these means, a Faust DSP named XYZ with
N audio inputs and M audio outputs becomes a
Pd object XYZ~ with N 41 inlets and M +1 out-
lets. The leftmost inlet/outlet pair is for con-
trol messages only. This allows you to inspect
and change the controls the unit provides, as de-
tailed below. The remaining inlets and outlets
are the audio inputs and outputs of the unit,
respectively. For instance, freeverb.dsp be-
comes the Pd object freeverb™ which, in addi-
tion to the control inlet /outlet pair, has 2 audio
inputs and outputs.

When creating a Faust object it is also possi-
ble to specify, as optional creation parameters,
an extra unit name (this is explained in the fol-
lowing section) and a sample rate. If no sample
rate is specified explicitly, it defaults to the sam-
ple rate at which Pd is executing. (Usually it is
not necessary or even desirable to override the
default choice, but this might occasionally be
useful for debugging purposes.)

In addition, there is also a Q script named
faust2pd, described in more detail below,
which allows you to create Pd abstractions as
“wrappers” around Faust units. The wrap-
pers generated by faust2pd can be used in Pd
patches just like any other Pd objects. They are
much easier to operate than the “naked” Faust
plugins themselves, as they also provide “graph-
on-parent” GUI elements to inspect and change
the control values.

Note that, just as with other Pd externals and
abstractions, the compiled .pd_linux modules
and wrapper patches must be put somewhere
where Pd can find them. To these ends you can
either move the files into the directory with the
patches that use the plugin, or you can put them
into the 1ib/pd/extra directory or some other
directory on Pd’s library path for system-wide
use.

3 The control interface

Besides the DSP algorithm itself, Faust pro-
grams also contain an abstract “user interface”
definition from which the control interface of
a Faust plugin is constructed. The Faust de-
scription of the user interface comprises various
abstract GUI elements such as buttons, check-
boxes, number entries and (horizontal and verti-
cal) sliders as well as the initial value and range
of the associated control values, which are spec-
ified in the Faust source by means of the builtin
functions button, checkbox, nentry, hslider
and vslider. Besides these “active” elements

which are used to input control values into the
Faust program, there are also “passive” ele-
ments (hbargraph, vbargraph) which can be
used to return control values computed by the
Faust program to the client application.

It is also possible to specify a hierarchical lay-
out of the GUI elements by means of appropri-
ate “grouping” elements which are implemented
by the Faust functions hgroup, vgroup and
tgroup (hgroup and vgroup are for horizon-
tal and vertical layouts, respectively, whereas
tgroup is intended for “tabbed” layouts). Each
GUI element (including the grouping elements)
has an associated label (a string) by which the
element can be identified in the client appli-
cation. More precisely, each GUI element is
uniquely identified by the path of labels in the
hierachical layout which leads up to the given
element. For further details we refer the reader
to the Faust documentation [4].

To implement the control interface on the Pd
side, the control inlet of a Faust plugin under-
stands a number of messages which allow to de-
termine the available controls as well as change
and inspect their values:

e The bang message reports all available con-
trols of the unit on the control outlet. The
message output for each control contains
the type of control as specified in the Faust
source (checkbox, nentry, etc.), its (fully
qualified) name, its current value, and its
initial, minimum, maximum and stepsize
values as specified in the Faust source.

e The foo 0.99 message sets the control foo
to the value 0.99, and outputs nothing.

e Just foo outputs the (fully qualified) name
and current value of the foo control on the
control outlet.

Control names can be specified in their
fully qualified form (giving the complete path
of a control, as explained above), like e.g.
/gnu/bar/foo which indicates the control foo
in the subgroup bar of the topmost group gnu,
following the hierarchical group layout defined
in the Faust source. This lets you distinguish
between different controls with the same name
which are located in different groups. To find
out about all the controls of a unit and their
fully qualified names, you can bang the control
inlet of the unit as described above, and con-
nect its control outlet to a print object, which
will cause the descriptions of all controls to be

printed in Pd’s main window. (The same infor-
mation can also be used, e.g., to initialize Pd
GUI elements with the proper values. Patches
generated with faust2pd rely on this.)

You can also specify just a part of the control
path (like bar/foo or just foo in the example
above) which means that the message applies to
all controls which have the given pathname as
the final portion of their fully qualified name.
Thus, if there is more than one foo control in
different groups of the Faust unit then sending
the message foo to the control inlet will report
the fully qualified name and value for each of
them. Likewise, sending foo 0.99 will set the
value of all controls named foo at once.

Concerning the naming of Faust controls in
Pd you should also note the following:

e A unit name can be specified at object
creation time, in which case the given
symbol is used as a prefix for all con-
trol names of the unit. E.g., the con-
trol /gnu/bar/foo of an object baz™ cre-
ated with baz™ bazl has the fully quali-
fied name /bazl/gnu/bar/foo. This lets
you distinguish different instances of an ob-
ject such as, e.g., different voices of a poly-
phonic synth unit.

e Pd’s input syntax for symbols is rather
restrictive. Therefore group and control
names in the Faust source are mangled into
a form which only contains alphanumeric
characters and hyphens, so that the con-
trol names are always legal Pd symbols.
For instance, a Faust control name like
"meter #1 (dB)" will become meter-1-dB
which can be input directly as a symbol in
Pd without any problems.

e “Anonymous” groups and controls (groups
and controls which have empty labels in the
Faust source) are omitted from the path
specification. E.g., if foo is a control lo-
cated in a main group with an empty name
then the fully qualified name of the con-
trol is just /foo rather than //foo. Like-
wise, an anonymous control in the group
/foo/bar is named just /foo/bar instead
of /foo/bar/.

Last but not least, there is also a special con-
venience control named active which is gener-
ated automatically. The default behaviour of
this control is as follows:

e When active is nonzero (the default), the
unit works as usual.

e When active is zero, and the unit’s num-
ber of audio inputs and outputs match,
then the audio input is simply passed
through.

e When active is zero, but the unit’s num-
ber of audio inputs and outputs do not
match, then the unit generates silence.

The active control frequently alleviates the
need for special “bypass” or “mute” controls in
the Faust source. However, if the default be-
haviour of the generated control is not appro-
priate you can also define your own custom ver-
sion of active explicitly in the Faust program;
in this case the custom version will override the
default one.

4 Basic example

Let’s take a look at a simple example to see
how these Faust externals actually work in Pd.
The patch shown on the right of Figure 1 fea-
tures a Faust external tone™ created from the
Faust source shown on the left of the figure.
The Faust program implements a simple DSP, a
sine oscillator with zero audio inputs and stereo
(i.e., two) audio outputs, which is controlled by
means of three control variables vol (the output
volume), pan (the stereo panning) and pitch
(the frequency of the oscillator in Hz). Note
that in the patch the two audio outlets of the
tone” unit are connected to a dac™ object so
that we can listen to the audio output produced
by the Faust DSP.

Several messages connected to the control in-
let of the tone™ object illustrate how to inspect
and change the control variables. For instance,
by sending a bang to the control inlet, we ob-
tain a description of the control parameters of
the object printed in Pd’s main window, which
in this case looks as follows:

print: nentry /faust/pan 0.5 0.5 0 1 0.01
print: nentry /faust/pitch 440 440 20 20000 0.01
print: nentry /faust/vol 0.3 0.3 0 10 0.01

Clicking the vol 0.1 message changes the
vol parameter of the unit. We can also send
the message vol to show the new value of the
control, which is reported as follows:

print: /faust/vol 0.1

import ("music.lib");

// control variables

vol = nentry("vol", 0.3, 0, 10, 0.01);
pan = nentry("pan", 0.5, 0, 1, 0.01);
pitch = nentry("pitch", 440, 20, 20000, 0.01);

// simple sine tone generator

process = osci(pitch)*vol : panner(pan);

() ol 0.1] [pitch 220] [Z|
Foll [pitch 440 [active §1{

Figure 1: Basic Faust example

In the same fashion we can also set the pitch
control to change the frequency of the oscillator.
Moreover, the active control (which is not de-
fined in the Faust source, but created automati-
cally by the Pd-Faust plugin interface) allows to
switch the unit on and off. The example patch
allows this control to be operated by means of
a toggle button.

5 Wrapping Faust DSPs with
faust2pd

Controlling bare Faust plugins in the way
sketched out in the preceding section can be
a bit cumbersome, so the faust2pd package
also provides a @Q script faust2pd.q which
can generate “wrapper” patches featuring ad-
ditional graph-on-parent GUIs. Most of the
sample patches in the faust2pd package were
actually created that way. To use the script,
you’ll also need the Q interpreter available from
http://q-lang.sf.net. The faust2pd pack-
age contains instructions on how to install the
script and the supporting Pd abstractions on
your system.

The graph-on-parent GUIs of the wrapper
patches are mot created from the Faust source
or the compiled plugin, but from the XML de-
scriptions (dsp.xml files) Faust generates when
it is run with the -xml option. Such an XML file
contains a readable description of the complete
hierarchy of the control elements defined in the
Faust program, and includes all necessary in-
formation to create a concrete rendering of the
abstract user interface in the Faust source. The
faust2pd script is able to read this XML de-
scription and create the corresponding Pd GUI
along with the necessary control logic.

The script is run as faust2pd
filename.dsp.xml; this will create a Pd
patch named filename.pd from the Faust
XML description in filename.dsp.xml. The
faust2pd program understands a number of

options which affect the layout of the GUI
elements and the contents of the generated
patch; you can also run faust2pd -h for
information about these additional options.

On Linux, the compilation of a Faust DSP
and creation of the Pd patch typically involves
the following steps (again taking the freeverb
module from the Faust distribution as an ex-
ample):

compile the Faust source and generate

the xml file

faust -a puredata.cpp -xml freeverb.dsp
-o freeverb.cpp

compile the C++ module to a Pd plugin

gt++ -shared -Dmydsp=freeverb freeverb.cpp
-o freeverb”™.pd_linux

generate the Pd patch from the xml file

faust2pd freeverb.dsp.xml

Just like the Faust plugin itself, the gener-
ated patch has a control input/output as the
leftmost inlet/outlet pair, and the remaining
plugs are signal inlets and outlets for each au-
dio input/output of the Faust unit. However,
the control inlet/outlet pair works slightly dif-
ferent from that of the Faust plugin. Instead of
being used for control replies, the control out-
let of the patch simply passes through its con-
trol input (after processing messages which are
understood by the wrapped plugin). By these
means control messages can flow along with the
audio signal through an entire chain of Faust
units. Moreover, when generating a polyphonic
synth patch using the -n a.k.a. -—nvoices op-
tion there will actually be two control inlets, one
for note messages and one for ordinary control
messages. (This is illustrated by the examples
in the following section.)

The generated patch also includes the neces-
sary GUI elements to see and change all (active
and passive) controls of the Faust unit. Faust
control elements are mapped to Pd GUI ele-
ments in an obvious fashion, following the hori-

zontal and vertical layout specified in the Faust
source. The script also adds special buttons for
resetting all controls to their defaults and to op-
erate the special active control.

This generally works very well, but you
should be aware that the control GUIs gener-
ated by faust2pd are somewhat hampered by
the limited range of GUI elements available in
a vanilla Pd installation:

e There are no real “button” widgets as
required by the Faust specification, so
“bangs” are used instead. There is a global
delay time for switching the control from 1
back to 0, which can be changed by sending
a value in milliseconds to the faust-delay
receiver. If you need interactive control
over the switching time then it is better
to use checkboxes instead, or you can have
faust2pd automatically substitute check-
boxes for all buttons in a patch by invok-
ing it with the -f a.k.a. -—-fake-buttons
option.

e Sliders in Pd do not display their value
in numeric form so it may be hard to fig-
ure out what the current value is. There-
fore faust2pd has an option -s a.k.a.
--slider-nums which causes it to add a
number box to each slider control. (This
flag also applies to Faust’s passive bargraph
controls, as these are implemented using
sliders, see below.)

e Pd’s sliders also have no provision for spec-
ifying a stepsize, so they are an awkward
way to input integral values from a small
range. On the other hand, Faust doesn’t
support the “radio” control elements which
Pd provides for that purpose. As a remedy,
faust2pd allows you to specify the option
-r MAX (a.k.a. --radio-sliders=MAX) to
indicate that sliders with integral values
from the range 0. .MAX-1 are to be mapped
to corresponding Pd radio controls.

e Faust’s “bargraphs” are emulated using
sliders. Note that these are passive con-
trols which just display a value computed
by the Faust unit. A different background
color is used for these widgets so that you
can distinguish them from the ordinary (ac-
tive) slider controls. The values shown in
passive controls are sampled every 40 ms by
default. You can change this value by send-
ing an appropriate message to the global
faust-timer receiver.

e Since Pd has no “tabbed” (notebook-
like) GUI element, Faust’s “tgroups” are
mapped to “hgroups” instead. It may be
difficult to present large and complicated
control interfaces without tabbed dialogs,
though. As a remedy, you can control the
amount of horizontal or vertical space avail-
able for the GUI area with the -x and -y
(a.k.a. -—-width and --height) options and
faust2pd will then try to break rows and
columns in the layout to make everything
fit within that area.

e You can also exclude certain controls from
appearing in the GUI using the -X option.
This option takes a comma-separated list
of shell glob patterns indicating either just
the names or the fully qualified paths of
Faust controls which are to be excluded
from the GUI. For instance, the option
-X ’volume,meter*,faust/resonator?/*’
will exclude all volume controls, all con-
trols whose names start with meter,
and all controls in groups matching
faust/resonator?.

e Faust group labels are not shown at all,
since there seems to be no easy way to draw
some kind of labelled frame in Pd.

Despite these limitations, faust2pd appears
to work rather well, at least for the kind of DSPs
found in the Faust distribution. Still, for more
complicated control surfaces and interfaces to
be used on stage you’ll probably have to edit
the generated GUI layouts by hand.

6 Faust2pd examples

Figure 2 shows the Faust program of a sim-
ple chorus unit. On the right side of the fig-
ure you see the corresponding object generated
with faust2pd with its graph-on-parent area, as
it is displayed in a parent patch. The object has
three inlet /outlet pairs, one for the control mes-
sages and two for the stereo input and output
signals. For this abstraction, we ran faust2pd
with the -s a.k.a. --slider-nums options so
that each hslider control in the Faust source
is represented by a pair of horizontal slider and
number GUI elements in the Pd patch.

If you open the chorus object inside Pd you
can have a closer look at the contents of the
patch (Figure 3). Besides the graph-on-parent
area with the GUI elements, it contains the
chorus” external itself along with inlets/outlets
and receivers/senders for the control and audio

import ("music.lib");

level = hslider("level", 0.5, 0, 1, 0.01);
freq = hslider("freq", 2, 0, 10, 0.01);
dtime = hslider("delay", 0.025, 0, 0.2, 0.001);
depth = hslider("depth", 0.02, 0, 1, 0.001);
tblosc(n,f,freq,mod) choros
= (1-d)*rdtable(n,waveform,i&(n-1)) + delay Ej
d*rdtable(n,waveform, (i+1)&(n-1)) [(»0.025
with { depth
waveform = time*(2.0%PI)/n : f; 1 [0.02)
phase = freq/SR : (+ : decimal) ~ _; freg
modphase = decimal (phase+mod/ (2*PI))*n; L1 2]
i = int(floor (modphase)); |1E"El 1 505)
d = decimal (modphase) ; -
};
chorus(d,freq,depth) = fdelay(1<<16, t)
with { t = SR*d/2*(1+depth*tblosc(1<<16, sin, freq, 0)); };
process = vgroup("chorus", (c, c))
with { c(x) = xt+levelxchorus(dtime,freq,depth,x); };
Figure 2: Faust chorus patch
delay OX r 50-init] k §0-in| [f §0-read [r §0-write|
I E r $0-active route actiwve|
depth 0R0D k S0-active m = 50-active
u—lfmq . 025 r §0-chorus/delay] route /chorus/delay]
[| | [z j |$ $l]—c]10ru.sfdelay| chorus/delay $1[= $0-cl ,Ld'EI'_ayI
|1eve1 : | sEE ¢ §0-chorus/depth| route /chorus/depth|
§0-chorus/ depth| chorus/depth $1] s §0-choxwsydepth|

Generated Mon 16 Oct 2006 01:16:21 PM CEST by fanst2pd

r 50- choru.s,.ffreqj

w1.0. See http://fandiostrean.sf.net and 6 30-chorus/ freq

chorus/ freq §1]

route /chorus/fre
s 50- re

http://q-lang. sf.net.

0.5(

r 50— choru.s}leve1|

route /choxrus/ levey

|§ 50-chorus/ leve1|

chorus/level $1[

|§ 50-chorus/ leve1|

Figure 3: Inside the chorus patch

inputs and outputs (on the left side of the fig-
ure, below the GUI area) and the control logic
for the GUI elements (on the right side). Of
course, the generated contents of the patch can
also be edited manually as needed.

It is also possible to generate polyphonic
synth patches. Figure 4 shows a simple exam-
ple, an additive synthesizer. On this Faust pro-
gram we invoked faust2pd with the -n a.k.a.
--nvoices option which specifies the desired
number of voices. The generated abstraction
then contains as many instances of the Faust

external as given with the -n option. The re-
sulting patch does not have any audio inputs,
but two control inputs instead of one. While
the right control inlet takes Faust control mes-
sages which are sent to all the Faust objects
(a.k.a. “voices”) simultaneously, the left inlet
takes triples of numbers consisting of a voice
number, a note number and a velocity value and
translates these to the appropriate freq, gain
and gate messages for the corresponding voice.

(At this time, the names of the three special
voice controls are hard-wired into the faust2pd

import ("music.lib");

// control variables

vol = hsl?der("vol", 0.3, 0, 10, 0.01); organ Ej
pan = hslider("pan", 0.5, 0, 1, 0.01); attack
attack = hslider("attack", 0.01, 0, 1, 0.001); 1| | [o.op]
decay = hslider("decay", 0.3, 0, 1, 0.001); decay
sustain = hslider("sustain", 0.5, 0, 1, 0.01); | I | [p0.3
release = hslider("release", 0.2, 0, 1, 0.001); release

L1 | D2
// voice controls rﬁhun | [0.5)
freq = nentry("freq", 440, 20, 20000, 1); |p=m | | (0.5]
gain = nentry("gain", 0.3, 0, 10, 0.01); vol
gate = button("gate"); 1 | 0.3 1

// additive synth: 3 sine oscillators with adsr envelop

process = (osc(freq)+0.5%0osc(2*freq)+0.25%osc(3*freq))

*x (gate :

* gain : vgroup("2-master", *(vol)

vgroup("1-adsr", adsr(attack, decay, sustain, release)))
: panner(pan));

Figure 4: Faust organ patch

script, so Faust programs must follow this stan-
dard interface if they are to be used as synth
units.)

Both kinds of patches can then easily be
arranged to the usual synth-effect chains, as
shown in Figure 5. In this example we combined
the organ and chorus patches from above with
another effect unit generated from the freeverb
module in the Faust distribution, and added a
frontend which translates incoming MIDI mes-
sages and a backend which handles the audio
output and displays a dB meter. (The latter
two components are just plain Pd abstractions.)

These sample patches can all be found in the
faust2pd package, along with a bunch of other
instructive examples, including the full collec-
tion of example DSPs from the Faust distri-
bution, more polyphonic synth examples and a
pattern sequencer demo.

7 Conclusion

The Pd-Faust external interface and the
faust2pd script described in this paper make
it easy to extend Pd with new audio processing
objects without having to resort to C program-
ming. Faust programs are concise and com-
paratively easy to write (once the initial learn-
ing curve has been mastered), and can easily
be ported to other plugin architectures such as
LADSPA and VST by simply recompiling the
Faust source. Still the efficiency of the gen-

erated code can compete with carefully hand-
coded C routines, and sometimes even outper-
form these, because of the sophisticated opti-
mizations applied by the Faust compiler.

The Pd-Faust interface is especially useful for
DSPs which cannot be implemented directly in
Pd in a satisfactory manner, like the Karplus-
Strong algorithm, because of Pd’s 1-block min-
imum delay restriction for feedback loops. But
it is also suitable for implementing all kinds of
specialized DSP components like filter designs
which could also be done directly in Pd but not
with the same efficiency. Last but not least, the
interface also gives you the opportunity to make
use of the growing collection of readily available
Faust programs for different audio processing
needs.

The Pd-Faust interface is of course only suit-
able for creating audio objects. However, there
is also a companion Pd-@Q plugin interface for
the Q programming language [5], also avail-
able at http://q-lang.sf.net. Together, the
faust2pd package and Pd-Q provide a com-
plete functional programming environment for
extending Pd with custom audio and control ob-
jects.

Future work on Faust will probably concen-
trate on making the language still more flexible
and easy to use, on providing an extensive col-
lection of DSP algorithms for various purposes,

pidi-in 8 C O
HEEEEEENR

1 I
0¥ gjarn Ej
attack
[| [o.m)
decayr
| I | D0.3
release
L1 | [0.2 |
sustain
| | | D05
pan
| | | D05
ol
U | [0.3]
I I I
chorus Ej
de Layr
L | [0.025 |
depth
1 | [o.0z)
freg
L1 | b2
level
I | | 0.5
I I I
freeverb Ej
damp
I | | 0.5
roomsize
| | | D05
wet
| I | [0.333)
1 1 1
andio-out

>+12 »+13

+6 +6

+2 +2

-0dB -04dB

-2 -2

-6 -6

-12 -12

-20 -20

—30 -30

-50 -50

<949 <-99

Figure 5: Synth-effects chain

and on adding support for as many target DSP
architectures and platforms as possible. Consid-
ering the considerable size of these tasks, con-
tributions (especially Faust implementations of
common DSP algorithms, and additional plu-
gin architectures) are most welcome. Interested
audio developers are invited to join the Faust
community at http://faust.grame.fr.

References

[1] Y. Orlarey, D. Fober, and S. Letz. An al-
gebra for block diagram languages. In Pro-
ceedings of the International Computer Mu-

sic Conference (ICMC 2002). International
Computer Music Association, 2002.

Y. Orlarey, D. Fober, and S. Letz. Syntac-
tical and semantical aspects of Faust. Soft
Computing, 8(9):623-632, 2004.

Yann Orlarey, Albert Graf, and Stefan Ker-
sten. DSP programming with Faust, Q
and SuperCollider. In Proceedings of the
4th International Linux Audio Conference
(LACO06), pages 39-47, Karlsruhe, 2006.
ZKM.

Yann Orlarey. Faust quick reference. Tech-
nical report, Grame, 2006.

Albert Graf. Q: A functional programming
language for multimedia applications. In
Proceedings of the 3rd International Linuz
Audio Conference (LAC05), pages 21-28,
Karlsruhe, 2005. ZKM.

