
Faust Tutorial 2
Grame, 9 rue du Garet, 69001 Lyon

by Tiziano Bole
August 22, 2008

Special thanks to ...
for the support, the reading and the corrections.

Contents

I Examples 3

1 Panners 5
1.1 The Simplest Panner . 5
1.2 Panner maintaining global intensity

(“2nd Simplest Panner”) . 7
1.3 Panner with interpolation

(Angle-Interpolated Panner) . 8
1.4 Computational overview . 12
1.5 Output-Interpolated Panner . 14
1.6 Stereo Panners . 16

1.6.1 Angle-Interpolated Stereo Panner 20
1.6.2 Output-Interpolated Stereo Panner 21

1.7 Conclusion . 21

2 Utility objects 25
2.1 S&H . 25
2.2 Pitch tracker . 26

2.2.1 Sinusoid Pitch Tracker - one period measurement 27
2.2.2 Sinusoid Pitch Tracker - several periods measurement . . . 32
2.2.3 How to set “a” inside a code 34
2.2.4 Complex sounds Pitch Tracker 35
2.2.5 Notes on the analysis cycles number 40
2.2.6 Max-MSP patch example 43

2.3 Computational overview . 43
2.4 Conclusion . 46

3 Delay lines 47
3.1 Delay line types . 47

3.1.1 The @ . 48
3.1.2 The rwtable(n,i,w,x,r) . 49
3.1.3 delay(n,d,x) . 50
3.1.4 fdelay(n,d,x) . 53
3.1.5 Fixed lenght delay lines . 55

1

Contents 2

3.1.6 Lagrange and Thiran allpass interpolative delay lines 56
3.1.7 Computational overview . 56

3.2 RMS . 56
3.2.1 RMS with fixed n . 58
3.2.2 RMS with changing n . 58

3.3 ITD panner . 60
3.4 WFS . 65
3.5 Adaptive FM synthesis (delay-line based PM technique) 69
3.6 Computational overview . 75
3.7 Conclusion . 75

4 Noisers 77
4.1 Uniformly distributed mono noiser 77
4.2 Uniformly distributed multichannel noiser 79
4.3 Normally distributed mono noiser 81

4.3.1 Central Limit Theorem technique 81
4.3.2 Box-Muller transform technique 84
4.3.3 Comparison between the three techniques 90

4.4 Noiser with Bernoulli distribution 91
4.5 Anti-denormal dithering . 93
4.6 Computational overview . 94
4.7 Conclusion . 94

5 Filters 97
5.1 Auto-Wha . 97
5.2 SSM . 100

5.2.1 Filters shaping . 100
5.2.2 Interpolating oscillators . 105
5.2.3 Whole code . 106

5.3 Adaptive FM Synthesis (heterodyning technique) 107
5.4 Circular spazialisator . 107
5.5 Computational overview . 107
5.6 Conclusion . 107

Part I

Examples

3

Chapter 1

Panners

Introduction

In this chapter are shown several panners written in Faust. Some of them
can not be really used in most cases, and are intended only as intermediate steps.
This is the case of the first two panners, described in sections 1 and 2 (“The
Simplest Panner” and “2nd Simplest Panner” respectively); in section 3 (“Angle-
Interpolated Panner”) is shown a really working panner and is explained how
to import Faust libraries; section 4 (“Computational Overview”) reports some
observations about the computational cost of these panners and of later presented
ones, and explains some C++ code; in section 5 (“Output-Interpolated Panner”),
is shown a new “quite correct” panner, less expensive than Angle-Interpolated
but equivalent to it in most cases; in section 6 (“Stereo Panners”) are shown
two stereo-input panners: Angle-Interpolated Stereo Panner (subsection 6.1) and
Output-Interpolated Stereo Panner (subsection 6.2); finally a short conclusion will
introduce you to the next chapter...

1.1 The Simplest Panner

Let’s take the simplest panner we could build in Faust. It should be something
like this:

//---1

// The Simplest Panner2

//---3

4

c = hslider("pan", 0.5, 0, 1, 0.01) ;5

process = <: *(1-c), *(c) ;6

In the process definition, we can see that a mono input is split into two
outputs (<:) and then scaled with coefficients 1-c and c respectively; c is the

5

Chapter 1 Panners 6

pan control, defined in line 5, and varies between 0 and 1. The resulting .svg
block-diagram is shown in Fig. 1.1.

Figure 1.1: The “simplest panner” - block-diagram

So, when c is at its minimum value, 0, the first channel (that is the left one)
will have the original amplitude (scale factor 1 − 0 = 1) while the second one
(that is of course the right one) will be silent (scale factor 0). When c is at its
maximum value, 1, it will be just the opposite. With c at its central value, 0.5, the
two outputs will have the same scale factor so we’ll hear the sound at the center.
Let’s call these requested values condition (1):

S(c) =


(1, 0) if c = 0 (pan to the left)
(0, 1) if c = 1 (pan to the right)
(x, x) if c = 0.5 (centered pan)

Unfortunately, condition (1) is not sufficient for a good panner, and this is
basically for two reasons:

1. varying the pan control does affect the global intensity;

2. varying the pan control does produce clicks because of the non-continuous
changing of the scale factors.

Let’s see how to solve these problems.

7
1.2 Panner maintaining global intensity

(“2nd Simplest Panner”)

1.2 Panner maintaining global intensity
(“2nd Simplest Panner”)

Imagine to use our panner on the channels of a mixer: we expect that changing
the pan value of one channel doesn’t affect its loudness, in order to let us changing
the pans without affecting the mixing balance. In fact when we multiply a signal
by a scaling factor (like the S(c) function in our panner) we are proportionally
scaling its amplitude. But the loudness our ears perceive deals with its intensity ,
that is proportional to the square of the (average) amplitude1:

I ∝ A2

This means that if we want to maintain constant the global intensity in our panner,
the sum of the intensities has to be constant, and not the sum of the amplitudes.
Let’s call this condition (2):

I(c) = IL(c) + IR(c) ∝ A2
L(c) +A2

R(c) = const.

So, the correct function to use for the output’s scaling is not S(c) = (1− c, c)
but S(c) = (

√
1− c,

√
c). In this way we will achieve both condition (1) and

condition (2). In fact:

A2
L(c) +A2

R(c) = A2(
√

1− c2 +
√
c
2) = A2

where A is the original amplitude, and is invariant respect to c. So S(c) meets
condition (2); it’s easy to check that it meets also condition (1).
We can now replace this S(c) in our code:

//---1

// The Second Simplest Panner2

//---3

4

c = hslider("pan", 0.5, 0, 1, 0.01) ;5

process = <: *((1-c) : sqrt), *((c) : sqrt) ;6

I’ve simply “linked” the original outputs with a sqrt function in process. The
name sqrt is very common in programming languages and in Faust too stays for
√ . The link is made by the sequential[?] operator “:”. The same process can be
written without some parenthesis thanks to the operator’s priorities (see [Orl07],
pag. 4):

process = <: *(1 - c : sqrt), *(c : sqrt) ;

1see [Loy06], p. 123

Chapter 1 Panners 8

or, if you prefer, in the more “usual” way:

process = <: *(sqrt(1 - c)), *(sqrt(c)) ;

You can see the resulting block-diagram in Fig. 1.2.

Figure 1.2: The “second simplest panner” - block-diagram

You can also see the graph of the new S(c) function in Fig. 1.3; the two outputs
in c = 0.5 have the same value, significantly greater than 0.5, that was the old
S(0.5) value. This means that the old function S(c) = (1 − c, c) “sounded” too
soft for the centered pan.

We have now solved the first problem, we still need to solve the second one:
the clicks.

1.3 Panner with interpolation
(Angle-Interpolated Panner)

The problem deals with the fact that c changes at control rate (minor than the
sampling rate) because it’s a slider’s value, not an input signal’s one, and Faust
upgrades it every n samples, depending on the host platform settings. So as you
can smoothly move it, it will always be constant for n samples and then jump to a
new value, and the output signal in that instant will change amplitude so quickly
that probably you’ll hear a click[?].2

The solution of this problem is interpolating in some way the consecutive

2It’s like “cutting” at an arbitrary non-zero position the wave: the result is the typical ap-
pearance of a lot of components all over the spectrum that we call “click”.

9
1.3 Panner with interpolation

(Angle-Interpolated Panner)

Figure 1.3: The S(c) = (
√

1− c,
√
c) function graph

given values of c, distributing that step among the intermediate samples, so that
then c varies at sampling rate. This operation is equivalent to filtering the c
values, thought as a signal, with a low-pass filter. We can take, for example, the
smooth function, defined in the Faust library Filter.lib by Julius O. Smith. smooth
is a low-pass filter that can take as argument an other function from the same
library, tau2pole, that sets the smooth’s parameter so that smooth(tau2pole(t))
becomes equivalent to an interpolator with t as smoothing time in seconds (i.e. in
how much time we want the smooth function to slide between stepping values quite
completely : see Fig. 1.4). We could choose an other low-pass function, but we had
to set then its parameters manually, dealing not directly with a time quantity.

Let’s insert this interpolation in c definition, sequentially after the slider read-
ing, and also a new slider for the interpolative time value.

//---1

// Angle-Interpolated Panner2

//---3

4

import("filter.lib") ;5

t = hslider("interpolation time", 0.001, 0, 0.01, 0.0001) ;6

c = hslider("pan", 0.5, 0, 1, 0.01) : smooth(tau2pole(t)) ;7

process = <: *(1-c : sqrt), *(c : sqrt) ;8

Chapter 1 Panners 10

Figure 1.4: In green, the “smooth(tau2pole)” function applied to a signal with
two steps (reported in red): 0-1 at sample 0 and 1-0 at sample 200. The
“tau2pole” argument was set as the duration of 50 samples. You can see that the
“smooth(tau2pole)” function does not reach the target value after 50 samples,
because it follows the values only asymptotically, using the exponential function.
In fact, coming from 0 value and rising to 1, after 50 samples it reaches only
1− e−1 ≈ 0.63; it is very close to 1 only after 200 samples. A similar behavior can
be seen on the “falling to 0” part, in which after 50 samples (at sample 250) the
smoothed signal is at e−1 ≈ 0.37 and is close to 0 only successively. This slowness
of the “smooth(tau2pole)” function is not nasty in most cases, but if you need a
more punctual interpolation, just set the tau2pole argument to a smaller value, for
example a quarter of the desired time. See section xxx for an explanation about
plotting signals.

11
1.3 Panner with interpolation

(Angle-Interpolated Panner)

We have to call of course the filter.lib library at the beginning of the .dsp code,
so that Faust will know the definition of the smooth and tau2pole functions.
When you need some particular function, you can scan the .lib files you find in
\architecture directory, opening them just like a .dsp code, with the same editor.
When you import libraries, pay attention not to be using for your dsp code function
names already used in the libraries you have imported, otherwise you’ll get the
error message:

ERROR: redefinition of symbols are not allowed :
BoxIdent[****] is already defined in file "****.lib" line **

An other way to use functions defined inside a Faust library is, of course, copying
their definition inside your .dsp code (and whatever other definition of function
they could call).

Finally, you can see the .svg block-diagram in Fig. 1.5, with the insertion of
the smooth(tau2pole) module. Note that two “c” blocks are shown in process:
this doesn’t mean that the “c” block is computed two times for each sample, this
is only a graphic representation of a two-time use of the “c” block’s value inside
the process block.

Figure 1.5: The Angle-Interpolated Panner - block-diagrams. The “c” module
is explored in a second step. The “smooth” module is not explored because its
definition has not been treated in this chapter and we will consider it as a ready-
made function.

Chapter 1 Panners 12

1.4 Computational overview

In the last section we got a “perfect working” panner, but at an important
computational cost: in Fig 1.6 you can see the evaluation of the output bandwidth
of some panners; until here, we have seen in the same order the first three panners:
the other plot’s panners will be discussed later in this chapter. The greater is
the output bandwidth, the less expensive is the computation of that panner (see
section ... for details about computational evaluation).

Figure 1.6: The output bandwidth of some panners (MB/s) tested on a Pentium
4, 2.66 GHz. The ratio with a reference value is shown in italics; the reference is
a simply .dsp that splits an input into two outputs, and represents the minimal,
without-calculations and common to all panners algorithmic unit; so it shows
the maximum possible output bandwidth, limited only by reading and writing
processes. Its value on the same computer is of about 3282 MB/s.

You can notice that 2ndSimplest is computationally slightly more expensive
than Simplest, of course because of the sqrt function adding. But you can see how
the computational cost of Angle-Interpolated, the last panner we have discussed, is
dramatically greater than the first two, more than 13 times greater! To understand
this expensiveness, let’s take a look to the C++ code generated by Faust, in Angle-
Interpolated and 2ndSimplest cases (Fig 1.7). I remind you that you can get this
code simply typing Faust and the name of the .dsp file, without further options.

I have evidenced the sqrt function position by a solid-line rectangle, and the

13 1.4 Computational overview

Figure 1.7: The C++ code generated by Faust in the 2ndSimplest and Angle-
Interpolated cases. It is shown here only the end of the “minimal” code, without
all the platform-depending part.

Chapter 1 Panners 14

for cycle by a dashed-line one. The sqrt function is the one we used in our
panners, while the for cycle is where the evaluation takes place at sampling rate;
the code before it is evaluated at control rate instead. I remind you that the control
rate is a submultiple of the sampling rate depending on the platform settings,
so the sqrt function in the first case is evaluated once every n samples, while
the same function in the second case is evaluated at each sample. This increases
greatly the computational cost of the second case, because sqrt is a very expensive
function (see chapter...), and so explains why Angled-Interpolated had a so greater
computational cost than 2nd simplest.

1.5 Output-Interpolated Panner

There are no less expensive ways to do the same work the Angle-Interpolated
panner does, but we can try an approximation. We have to get the sqrt function’s
evaluation out of the for cycle, i.e. before it.

In the Angle-Interpolated panner, we had first the smooth function, just after
the slider reading, and then the two sqrt functions. In fact, looking at Fig. 1.5,
you can imagine the slider’s data getting out of the hslider object and into the
smooth one, all inside the “c” block; then in process this data flow gets out of
that block and into the sqrts, eventually passing through the - module. In other
words, the smooth function’s result becomes, with some mapping, the argument
of the sqrt functions. In this way, we force the sqrt function to be evaluated
at sampling rate, because its argument, requiring the evaluation of the function
smooth, changes at that rate.

If we want the expensive sqrt functions to be evaluated at control rate, like
in 2nd Simplest, we have to do just the opposite, using the sqrt functions as
arguments of two smooth functions, exchanging the order of the sequential link.

Here is the code of this new panner, its .svg block-diagram (Fig. 1.8) and the
C++ generated code (Fig 1.9).

//---1

// Output-Interpolated Panner2

//---3

4

import("filter.lib") ;5

t = hslider("interpolation time", 0.001, 0, 0.01, 0.0001) ;6

c = hslider("pan", 0.5, 0, 1, 0.01) ;7

process = <: *(1-c : sqrt) : smooth(tau2pole(t)),8

(*(c : sqrt) : smooth(tau2pole(t))) ;9

The computational cost of this panner is quite less than the Angle-Interpolated
one, and it does quite the same work. The difference is that in Angle-Interpolated
every value (also the ones in the interpolation phase) got into the S(c) function

15 1.5 Output-Interpolated Panner

Figure 1.8: The Output-Interpolated Panner block-diagram.

Chapter 1 Panners 16

Figure 1.9: The Output-Interpolated Panner C++ code (only “minimal” part).

(the one that needs the √ : see section 2); so every value met what we called the
condition (2). In Output-Interpolated only the slider’s values get into the S(c)
function, while the interpolation comes after: so condition (2) is met only by the
slider’s values (updated at control rate), and not by the intermediate interpola-
tion ones. This difference should be appreciable only during slider’s changing: in
Angle-Interpolated you should listen always the same intensity, while in Output-
Interpolated the intensity could change for some instants during a slider’s step.
So if the slider will change in a continuous way, you could hear only interpolation
phases and the original intensity will be in some way corrupted. This is not a
frequent case, but for example in acoustic experiments this could happen and you
should use the Angle-Interpolated ; for common musical cases feel free to use the
Output-Interpolated instead. You can see a simulation of a typical pan movement
using this panner in fig. 1.10.

1.6 Stereo Panners

The panners we’ve seen until now took always a mono input and split it with
some amplitude corrections into two outputs. Let’s call them Mono Panners
because of the mono signal as input. How should we map now a stereo input
into the two outputs? The idea I’ve followed is to mix the inputs into one output
channel and leave the other one silent when the pan control is completely turned in
one direction (left or right); to assign then the unchanged inputs to the respective
outputs when the panner is at the center; let’s pause and call these two sentences
condition (1b):

17 1.6 Stereo Panners

Figure 1.10: Simulation of a “pan movement” using the Output-Interpolated Pan-
ner. The green stepping line are the slider’s values in time domine. The slider
goes from 0 to 1 in 0.1 seconds, at a sampling rate of 44100 Hz and control blocks
of 256 samples. So the slider’s value is updated once every 256 samples, remaining
constant during the rest of the control block. The slider’s values are represented
on the right scale (0..1). The red line represents the squared amplitudes sum of
the two output channels. This value is proportional to the global intensity and
should not change. With this panner it does change but in a very little range
(left scale): from 1.002062 to 1.000100 pa2, that’s about 0.0085 dB, very minor
than the just noticeable difference (JND). The interpolative time is set to 0.1 ms.
So in a “normal” panner use, this panner works very well; however, significant
differences could be if the pan control steps in a really short time between two
distant values (like (−1, 1)).

Chapter 1 Panners 18

(S′(c))(l, r) =


(l + r, 0) if c = 0 (pan to the left)
(0, l + r) if c = 1 (pan to the right)
(l, r) if c = 0.5 (centered pan)

S′(c) is the new scaling function, c is the pan position value which range is
[0, 1], and (l, r) is the couple of input signal streams, that is the argument of (S′(c))
function.

Finally, we should use a square rooted amplitude function for the intermediate
pan positions (of course, to respect condition (2)). The amplitude vs. pan posi-
tion graph shown in Fig 1.11 will help you in understanding this idea. S′(c)(l, r)
is broken in four functions (see the figure’s caption for details).

Figure 1.11: The “amplitude vs pan position” graph for a stereo input panner. L[•]
and R[•] represent the amount of input sent respectively to left and right outputs;
the meta-arguments are left [L] and right [R] inputs. For example, L[R] is the
amount of right input to be sent to left output, and is of course a function of c,
so I’ll write in this case L[R](c); finally, I’ll write S′(c, l, r) = [...] = (OutL, OutR),
where (l, r) are respectively the left and right input channels and (OutL, OutR)
the output ones.

You can see by the graph that condition (1b) is met by these functions, since

19 1.6 Stereo Panners

when c = 0 (pan to the left), with (l, r) as inputs, the output is:

OutL = L[L](c=0) · l + L[R](c=0) · r =
= 1 · l + 1 · r =
= l + r

OutR = R[L](c=0) · l +R[R](c=0) · r =
= 0 · l + 0 · r =
= 0

So the output couple is (OutL, OutR) = (l + r, 0).
In the same way you can see by the graph that:

S′(c=1, l, r) = (0, l + r) and
S′(c=0.5, l, r) = (l, r)

Let’s see now the four partial functions in analytic form:

L[L](c)
def
=
√

min(1, 2− 2c)

L[R](c)
def
=
√

max(0, 1− 2c)

R[L](c)
def
=
√

max(0, 2c− 1)

R[R](c)
def
=
√

min(1, 2c)

The core of these functions is the
√
c function, eventually translated, stretched

and inverted, by a coordinates exchange, in order to “place” the four functions
into the plane by the needed way. The min and max functions are finally used to
maintain the codomain into the range [0,1] and to avoid negative values under the
√ . You can verify that condition (2) is met by these functions – considering
the sum of the four intensities given by all of them.

In a more synthetic way, we can write now the S′(c) partial function as a
2× 2 matrix, that we’ll call A, and the application to the (l, r) inputs as an array
multiplication.

A
def
=
(
L[L](c) L[R](c)
R[L](c) R[R](c)

)
=

=
(√

min(1, 2− 2c)
√

max(0, 1− 2c)√
max(0, 2c− 1)

√
min(1, 2c)

)

Chapter 1 Panners 20

S′(c, l, r)
def
= A

(
l
r

)
=

=


√

min(1, 2− 2c)
√

max(0, 1− 2c)√
max(0, 2c− 1)

√
min(1, 2c)

 l

r

 =

=


√

min(1, 2− 2c) · l +
√

max(0, 1− 2c) · r√
max(0, 2c− 1) · l +

√
min(1, 2c) · r

 =

=
(
OutL
OutR

)

Now we can use these (two) functions in a Faust code, and make the two
variants of an Angle-Interpolated Stereo Panner and an Output-Interpolated one.

1.6.1 Angle-Interpolated Stereo Panner

Let’s see the .dsp code and the .svg block diagram (Fig 1.12).

//---1

// Angle-Interpolated Stereo Panner2

//---3

4

import("filter.lib") ;5

t = hslider("interpolation time", 0.001, 0, 0.01, 0.0001) ;6

c = hslider("pan", 0.5, 0, 1, 0.01) : smooth(tau2pole(t)) ;7

8

OutL(c,l,r) = sqrt(min(1,2-2*c))*l + sqrt(max(0,1-2*c))*r ;9

OutR(c,l,r) = sqrt(max(0,2*c-1))*l + sqrt(min(1,2*c))*r ;10

pan(c,l,r) = OutL(c,l,r)/2, OutR(c,l,r)/2 ;11

12

process = pan(c) ;13

The OutL(c,l,r) and OutR(c,l,r) functions are of course the two rows of
the output array. The division /2 of the OutL and OutR functions is to avoid
clipping when the two inputs are mixed together into one single channel (as in
c = 0 and c = 1 cases).

21 1.7 Conclusion

1.6.2 Output-Interpolated Stereo Panner

And finally the Output-Interpolated Stereo Panner, in which the smooth func-
tion is commuted with the sqrt, like in the mono-input version, and also with the
other arithmetic operations in this case.

//---1

// Output-Interpolated Stereo Panner2

//---3

4

import("filter.lib") ;5

t = hslider("interpolation time", 0.001, 0, 0.01, 0.0001) ;6

c = hslider("pan", 0.5, 0, 1, 0.01) ;7

8

OutL(c,l,r) = sqrt(min(1,2-2*c))*l + sqrt(max(0,1-2*c))*r,;9

OutR(c,l,r) = sqrt(max(0,2*c-1))*l + sqrt(min(1,2*c))*r ;10

pan(c,l,r) = OutL(c,l,r)/2, OutR(c,l,r)/2 :11

: smooth(tau2pole(t)), smooth(tau2pole(t)) ;12

13

process = pan(c) ;14

1.7 Conclusion

We have seen in this chapter how to build panners, i.e. objects that simulate a
sound source’s position by changing the level of left & right channels. For a better
simulation, we should use also a delay control. In next chapter we’ll see some
utility objects first, then in the Delay lines following chapter we will see several
delay line functions, eventually (but not only) used in space positioning objects.

Chapter 1 Panners 22

Figure 1.12: The “Angle-Interpolated Stereo Panner”: block diagram (three
steps). Here only left channel’s processing is shown, the right’s one is obviously
similar to it.

23 1.7 Conclusion

Figure 1.13: The “Output-Interpolated Stereo Panner”: block diagram. “OutL”
and “OutR” blocks, excepting for the “c” block, without “smooth” now, are the
same of the “Angle-Interpolated Stereo Panner”, so they are not shown here.

Chapter 1 Panners 24

Chapter 2

Utility objects

Introduction

We need now to define some utility functions that will be necessary to build
more complex objects. The first is a Sample&Hold (S&H), then a Pitch tracker
using the signal’s zero-crossing rate. This object will be developed in several steps:
from a Sinusoid Pitch Tracker with a single-cycle analysis, to one with multiple-
cycles analysis, ending with a Universal Pitch Tracker, working on an arbitrary
signal. Finally you’ll find and application example, a computational overview of
the presented objects and a brief conclusion.

2.1 S&H

The Sample&Hold is a function that outputs the value of an incoming signal
when it is triggered (sample), then it goes on to output that value (hold) as long
as it doesn’t receive a new triggering event. Then it starts to output the input
signal’s (new) value of that instant and so on. It will be essential in developing
more complex objects. Let’s see the Faust code:

//---1

// S&H2

//---3

4

but = button("Hold!") ;5

SH(trig,x) = (*(1 - trig) + x * trig) ~ ;6

process = SH(but) ;7

First there is a simple user interface: a button labelled “Hold!”, which value
is stored in the but variable. If triggered, the button will return the value 1, else
the value 0. So these are the possible values of the but variable. Then there is the

25

Chapter 2 Utility objects 26

SH function definition, in which the first argument, trig, is the triggering signal,
while the second, x, the signal to be sampled. Finally, the process definition
is the partial function SH(but), in which the unique argument is the first one
(the triggering signal, called trig in SH definition), while the second, unassigned,
becomes an object inlet. So but, the button value, will trigger the inlet signal.

Let me explain you the SH(trig,x) definition. We want SH to be equal to x if
trig= 1, and equal to its previous value else (t is the time instant):

SHt(trig, x) =
{
x if trig = 1
SHt−1(trig, x) if trig = 0

You will agree with me if I say that this function can be written in this single-
line way:

SHt(trig, x) = SHt−1(trig, x) · (1− trig) + x · trig

As long as trig can have only the values {0, 1}, if it is 1 then the first addend
is nulled and only the second one stays alive, if it is 0 it’s just the opposite. Notice
that if we allow also intermediate values for trig, then these two addends will
represent a convex combination, i.e. a linear interpolation between SHt−1(trig, x)
and x. Now, unfortunately in Faust this writing has no sense, you can not
define a function calling itself in this way. But you can use the ~ operator, that
takes its right function’s output and sends it back to its left function’s input – of
course, with a 1-sample delay. So, simply look at our single-line SH function, and
just imagine to replace the call to SHt−1 with a cable outgoing from the same
expression’s ending. It becomes something like this:

SHt(trig, x) =↪→ (·(1− trig) + x · trig)←↩

The arrows should represent this looping cable. This expression looks now
very Faust-like, we have only not to care about the instant t and to replace the
symbols with the Faust ones. Thus we obtain exactly the code line!

SH(trig,x) = (*(1 - trig) + x * trig) ~ ;

Let’s see finally the .svg block-diagram in fig. 2.1. You can notice the “looping
cable” outgoing from the output “cable” and turning back inside a * block.

2.2 Pitch tracker

The goal of a pitch tracker is to return the instant pitch of an input (periodic)
signal. There are many ways to do so, like the FFT method or the autocorrelation
method (see [Kuh90] for a discussion on these methods). Unfortunately, in Faust
these methods are not computably practicable, because actually you should apply
them once per sample, even if it’s not necessary, with a huge computational cost as
result – in some future Faust version this “limitation” could be removed. Instead,

27 2.2 Pitch tracker

Figure 2.1: The “S&H” - block-diagram

we are going to implement a cheaper pitch tracker that returns the instant pitch
analyzing the zero-crossing rate of the input signal. In fact, the wave period of
a sinusoidal signal is exactly the time that elapses every three zeros (one at the
beginning of the period, one at the passage from positive to negative, one at the
ending of the period, that coincides with the next period’s first zero); see fig. 2.2.

So, as long as we are dealing with sinusoids, we have simply to wait three
zeros and to count the elapsed samples, then we can easily get the corresponding
sinusoid’s frequency. But what about if our input is a more complex waveform?
We’ll have to count more zeros because the wave could cross more times the zero
value during each period. Or we can filter the signal with an adaptive lowpass
filter, but we’ll see this solution later. Let’s develop a sinusoid pitch tracker first.

2.2.1 Sinusoid Pitch Tracker - one period measurement

Ok, the plain is that we build some simple functions, that one after the other
gradually refine the signal period length information.

U function. The first of these function has to detect the zeros. To be more
selective, we can ask only the zeros during which the signal is rising (not all the
zeros then); for a sinusoidal signal, a period will be the elapsing time between only
two of these kind of zeros. I’ve called this function U(xt), where xt is the input

Chapter 2 Utility objects 28

Figure 2.2: A 100 Hz sinusoid (time in seconds on the abscissa). The period takes
0.01 seconds, and you can see that it coincides with the time elapsed every three
zeros.

signal at the instant t.

U(xt) =
{

1 if xt−1 < 0 et xt ≥ 0
0 else

Notice that in the first condition I’ve wrote xt ≥ 0 and not xt = 0, because
in the discrete domine in which we are going to apply this function, we are not
ensure that exactly the instant in which xt = 0 will be sampled; thus we have
to search two consecutive xt of opposite sign, so that for the Zeros theorem we’ll
know that between them at least one zero had occured. We can express this U
function in a Faust code expression:

U(x) = (x’ < 0) & (x >= 0) ;

where ’ is a single-sample delay line, so if U(x) is Ut(x), then x’ is xt−1. The &
operator is the logical AND, so it returns 1 (true) if the two conditions are true
(1), else it returns 0 (false). You can see the U(xt) function graph in fig. 2.3 and
the .svg block-diagram in fig. 2.4.

N function. We are interested in countering the time elapsed between two suc-
cessive spikes of the U(xt) function. So we need a counter function – of course, we
count the time in samples in this digital context. I’ve called this function N(xt),
and it is 0 if U(xt) = 1, else it rises each sample: so it counts the samples elapsed

29 2.2 Pitch tracker

Figure 2.3: The U(xt) function (in red) with a 100 Hz sinusoid as argument (in
blue). Time in seconds on the abscissa. A period is exactly the time elapsing
between two U(xt) function spikes.

Figure 2.4: The U function block-diagram.

Chapter 2 Utility objects 30

since the last U(xt) spike occurred (see fig. 2.5). The Faust function definition is
the usual counter (already presented in [GO03]), with the add of a multiplication
that resets it to zero if U(xt) = 0, and else leaves it untouched:

N(x) = (+(1) : *(1 - U(x))) ~ ;

Figure 2.5: The U(xt) sampled function (in red) and the respective N(xt) function
(in green). Time in samples on the abscissa, ordinate dimensionless. A period,
that is also the time elapsing between two U(xt) function spikes, can be read from
the last N(xt) value before a zero, plus 1.

You can see the N block diagram in fig. 2.6.

Figure 2.6: The N function block-diagram.

M function. So the original problem of determining the number of samples in
one period, is equivalent to determining the last N(xt) value plus one, before a
N(xt)’s zero. This is an easy task for our S&H object (see 2.1). The trigger will
be the condition N(xt) = 0, while the sampled function will be N(xt−1) + 1, the
previous N value plus 1. So if N(xt) = 0, the N(xt−1) value is sampled and holden
until the next N zero, i.e. for an input signal period time. I’ve called this new
function M(xt):

31 2.2 Pitch tracker

M(x) = SH(N(x) == 0, N(x)’ + 1) ;

I remind you that the first SH argument is the trigger, the second the signal to be
sampled. Inside the trigger argument I’ve used the == operator, that returns 1 if
N(xt) = 0, 0 else.

Pitch function. So now we have the input signal period’s length in samples
inside the M(xt) function. If we want its frequency instead, we have just to divide
the sampling rate by the M(xt) value:

Pitch(xt) =
SR

M(xt)

SR is a function that returns the hosting sampling rate, and is defined in the
math.lib library. To avoid divisions by zero, we can insert a max function inside
the denominator, for example max(M(xt), 1), so that even if M(xt) = 0, the
max function will select the value 1 (because in this case 1 > M(xt)) and the
fraction will still be defined. Since this case should occur only at the beginning
of the computation, due to the initialization values, then maybe we’d expect the
Pitch(xt) function to be null, rather than to value SR

1 . So we have to subtract
SR if M(xt) = 0. The resulting Faust code is then the following:

Pitch(x) = SR / max(M(x), 1) - SR * (M(x) == 0) ;

Whole code. Ok, we have finished our Sinusoid Pitch Tracker, let’s write now
the whole code.

//---1

// Sin Pitch Tracker (1 period measurement)2

//---3

4

import("math.lib") ; //for SR definition5

SH(trig,x) = (*(1 - trig) + x * trig) ~ ; //SH definition6

7

U(x) = (x’ < 0) & (x >= 0) ;8

N(x) = (+(1) : *(1 - U(x))) ~ ;9

M(x) = SH(N(x) == 0, N(x)’ + 1) ;10

Pitch(x) = SR / max(M(x), 1) - SR * (M(x) == 0) ;11

process = Pitch ;12

The process calls the Pitch function without any argument: so the requested
x argument becomes an object inlet: the input signal.

Ok let me write now the same code with a new syntax:

Chapter 2 Utility objects 32

//---1

// Sin Pitch Tracker (1 period measurement)2

//---3

4

import("math.lib") ; //for SR definition5

SH(trig,x) = (*(1 - trig) + x * trig) ~ ; //S&H definition6

7

Pitch(x) = SR / max(M, 1) - SR * (M == 0)8

with {9

U = (x’ < 0) & (x >= 0) ;10

N = (+(1) : *(1 - U)) ~ ;11

M = SH(N == 0, N’ + 1) ;12

} ;13

process = Pitch ;14

Have you noticed something? I’ve used the with{...} syntax. I’ve defined the
main function (the one that returns the pitch), and without putting ; at its end,
I’ve written with{...} and only then I’ve putted the ;. Inside the with{...} I’ve
defined all the other functions I needed to define the main one, without specifying
the arguments (I’ve written U and not U(x) as it normally should had been): in fact
they are passed from the main function. This syntax has two advantages in respect
to the normal function definitions: one is that the main function’s arguments are
passed inside the with and you have not to write them each time, as just seen; the
other is that the functions inside the with are not defined outside it, so you can
use the same function names in other places without multiple definitions errors.

2.2.2 Sinusoid Pitch Tracker - several periods measurement

There is a problem in the sinusoid pitch tracker we have just made. In fact, for
the frequency calculation we have used the M(xt) function, that counts the time in
samples, so there could be some significant error because of the time quantization.
A solution is to count the duration of a set of several periods and then divide
this result for the number of periods considered; fortunately, in a normal pitched
sound the pitch won’t change inside this small set of periods. So let’s call a the
number of periods we consider – this value will be assigned to a slider.

V function. Take the N(xt) function, that we have used as a counter reseted to
zero by the event U(xt) = 1 (i.e. a zero in the input signal in a “rising” section).
Now we should consider a set of a of these events, so we want the N(xt) function
to be reseted to zero only after a U(xt) = 0 events. Of course, now we need a
counter for the U(xt) = 0 events. I’ve called this counter V (xt), let’s see its Faust
definition:

V(a,x) = +(U(x)) ~ %(int(a)) ;

33 2.2 Pitch tracker

It should remind you a counter like:

count = +(1) ~ ;

only that instead of +(1) I’ve placed +(U(x)), that is equal to 1 during a (impor-
tant) zero, else it’s equal to 0. So instead of having a counter that increases by
1 at each sample (last code line), we have a counter that increases by 1 at each
U(xt) = 0 event. The modulo function (%) recursively reset the counter to 0 as
soon as it reaches the int(a) value; the function int (that returns the integer
value of a number) seems inutile, in fact a is already an integer, being the number
of periods we are considering; however, the compiler doesn’t know this background
and needs the int(a) specification. So, riassuming, the V (a, xt) function increases
by one at each U(xt) = 0 event and as it reaches the a value, it is reseted to 0.

W function. We should change now the definition of the N(xt) function, so that
it doesn’t stop rising until a U(xt) = 1 and V (a, xt) = a event occurs, i.e. until a
signal (important) zero is detected and exactly a of these zeros have been passed
since the last V (a, xt) reset (and so also the last N(xt) one). It’s simpler if we
define a new function, W (a, xt), that represents this double requested condition.

W (a, xt) =
{

1 if U(xt) = 1 et V (a, xt) = a
0 else

In Faust this should be something like this:

W(a,x) = (U(x) == 1) & (V(a,x) == a) ;

As in Faust the “true” value is represented by 1, and the “false” one by 0, we
can simplify the first condition, and the code becomes:

W(a,x) = U(x) & (V(a,x) == a) ;

Final changes. Now, we have to update the N(xt) function, replacing the U(xt)
function with the just defined W (a, xt) one:

N(a,x) = (+(1) : *(1 - W(a,x))) ~ ;

Finally, the main function Pitch(a,x) has to divide M(a, xt) by a, and to be
corrected in order to be null if M(a, xt) = 0:

Pitch(a,x) = a * SR / max(M(a,x),1) - a * SR * (M == 0) ;

The whole code becomes then the following:

Chapter 2 Utility objects 34

//---1

// Sin Pitch Tracker (a periods measurement)2

//---3

4

import("math.lib") ;5

SH(trig,x) = (*(1 - trig) + x * trig) ~ ;6

a = hslider("n cycles", 1, 1, 100, 1) ;7

8

Pitch(a,x) = a * SR / max(M,1) - a * SR * (M == 0)9

with {10

U = (x’ < 0) & (x >= 0) ;11

V = +(U) ~ %(int(a)) ;12

W = U & (V == a) ;13

N = (+(1) : *(1 - W)) ~ ;14

M = SH(N == 0, N’ + 1) ;15

} ;16

process = Pitch(a) ;17

The higher is a, the more precise is this pitch tracker; but remember that if you
increase a, then the analysis flow delay also increases!

2.2.3 How to set “a” inside a code

Be careful that, at least on the Faust version I’m actually using (0.9.9.4j-par),
if you set a constant a value inside the code, the Pitch Tracker won’t work, it will
return always the value 0. A look to the generated C++ code will explain the cause
of this error. I’ve took for example the last Pitch Tracker and modify its process
in the following way:

process = Pitch(8), Pitch(a) ;

This process computes in parallel two Pitch function, with the a parameter fixed
to 8 the first one, with the slider’s value as the same parameter the second one.
Well, only the second function will work properly. In fig. 2.7 you can see the last
part of the C++ generated code. You can recognize the for cycle, inside which are
computed the functions at the sampling rate. The two lines of code showed inside
are the two output definitions: output0[i] is the first output, so it represents
the Pitch(8) result (can you find the 8 presence in the code?); output1[i] is the
second output and represents the Pitch(a) result instead. The last one, as just
said, is the only one that will work. The reason stands in that 1.0f in the second
output, that is instead replaced with the 8 in the first one. In fact, for C++, 1.0f
is a floating point number, so all the computing results will be floating point (that
is correct); the first line, on the contrary, deals in some way only with integer
values, and the outputed result is then wrong. Then, it is sufficient to multiply

35 2.2 Pitch tracker

Figure 2.7: The C++ generated code of the “wrong” process definition. Only the
second output will work properly.

our fixed value (8 in this example) by a floating point coefficient of 1.0, or to use
the float Faust function, or simply type 8.0, and also the first output will be
working properly.

process = Pitch(8 * 1.0), Pitch(a) ;
process = Pitch(8 : float), Pitch(a) ;

process = Pitch(8.0), Pitch(a) ;

All of these lines will produce the same – correct – C++ code, that will be working
for both the outputs (see fig. 2.8).
The present warning will be of much utility in the Adaptive FM synthesis (delay-

Figure 2.8: The C++ generated code of the “correct” process definition. Both the
outputs will work properly; you can notice in fact that in the first output instead
of the 8 there is a 8.0f (floating point number).

line based PM technique), in 3.5, where the pitch tracker will controll a delay
line.

2.2.4 Complex sounds Pitch Tracker

Now that we have a sinusoid pitch tracker, let’s see what would happen if we
apply this object on a complex sound instead. Take a look at fig. 2.9. If we apply
to this wave our sinusoidal pitch tracker, it will count 3 “important” zeros during

Chapter 2 Utility objects 36

Figure 2.9: A 3-components harmonic wave at 100 Hz (two periods showed). Each
period has 3 zeros during “rising” phases; these zeros have been labeled in the first
period with Greek letters.

each period, so it will return a frequency of about 300 Hz instead of only 100. A
solution could be an adaptive low-order lowpass filter, that filters the signal to
be analyzed, and which cutoff frequency follows the detected pitch. For example,
I’m going to use a first-order Butterworth lowpass filter . Let’s apply this new
algorithm to our complex waveform.

1st step. We have understood that the first signal pitch analysis says about 300
Hz. Thus the filter is applied with this as cutoff frequency. See fig. 2.10.

2nd step. This new version of the input signal is then sent to the sinusoid pitch
tracker. Due to the filter’s smoothing effect, a zero has been eliminated, and the
new returned value, depending on the a amount, should be around 200 Hz (exactly
200 Hz if a is even). Then the lowpass filter is set with this new value as cutoff
frequency (see fig. 2.11).

3rd step. Now the waveform has exactly one “important” zero per period, so
the sinusoid pitch tracker will return the correct frequency. However, to reach a
stable configuration we need a last step, in which the filter is set at the cutoff
frequency of 100 Hz. This obviously won’t affect the number of zeros anymore,
and the pitch tracker will continue to return the correct frequency (see fig. 2.12).

37 2.2 Pitch tracker

Figure 2.10: First step: the 3-components harmonic wave at 100 Hz is filtered by
the lowpass filter at the cutoff frequency of 300 Hz. The “important” zeros per
period are only 2 now, due to the filtering smoothing effect.

Figure 2.11: Second step: the 3-components harmonic wave at 100 Hz is filtered by
the lowpass filter at the cutoff frequency of 200 Hz. There is only one “important”
zero per period now.

Chapter 2 Utility objects 38

Figure 2.12: Third step: the 3-components harmonic wave at 100 Hz is filtered
by the lowpass filter at the cutoff frequency of 100 Hz. The configuration is now
stable (the next steps don’t change anything as long as the signal remains the
same).

Timing overview. Thus, already after two steps the pitch tracker begins to
detect the correct pitch, and because its value is updated every a cycles, this
detection takes in this case less than 0.019 · a seconds. In fact, at the first step
(no filtering) the detected period is 1/300 s, so it is returned after a/300 s; at
the second step the detected period is about 1/200 s, so it is returned after a/200
s; since the third step the detected period is the correct one (1/100 s), and it
is returned after a/100 s. If you sum all these timings, the total requested time
will be the already said one. This is not a so quick process, in fact the a value
could be at around 10 (see 2.2.5 for details about a value choice), so the requested
detecting time would be in the considered case of about 0.2 seconds, that is the
duration of a 16th note at 75 b.p.m., something very common in music. The
true implemented code, as you will see, sets as initial filter’s cutoff frequency the
value of 100 Hz, before the Sinusoid Pitch Tracker starts its analysis. So in the
real implementation, this considered case will be “solved” in only 0.01 · a seconds,
that’s half of the previous timing.

Changing signal. Now, what happens if the signal pitch changes? Well, if it
decreases, then also the detected pitch will decrease and in a few steps the filter
will stably isolate, as already seen, the desired unique zero per period. If the pitch
increases, you could think that the filter may “cut” all the waveform, being set
with a cutoff frequency lower than the new signal fundamental. Instead, due to the

39 2.2 Pitch tracker

fact that the filter is not an ideal one, it lets the signal fundamental’s zero-crossing
rate information untouched. You can see an example of this behavior in fig. 2.13.

Figure 2.13: The input signal has increased its pitch: the 3-components harmonic
wave has now 200 Hz and is filtered by the lowpass filter set at the “old” cutoff
frequency of 100 Hz. There is no loss of information, and the sinusoid pitch tracker
is able to detect the new fundamental frequency.

Faust code. The Faust code for this new pitch tracker, compared with the
sinusoid one, consists only in a modification of the process definition and in the
add of a library.

//---1

// Universal Pitch Tracker (a periods measurement)2

//---3

4

import("math.lib") ;5

import("filter.lib") ;6

SH(trig,x) = (*(1 - trig) + x * trig) ~ ;7

a = hslider("n cycles", 1, 1, 100, 1) ;8

9

Pitch(a,x) = a * SR / max(M,1) - a * SR * (M == 0)10

with { [...]} ;11

process = dcblockerat(80) : (lowpass1 : Pitch(a)) ~ max(100) ;12

I’ve added the filter.lib library for the definitions of the filters I’m going to use.
Then in the process definition I’ve put first dcblockerat, a high-pass filter set

Chapter 2 Utility objects 40

with a cutoff frequency of 80 Hz. This is for removing any signal’s DC offset and
low-frequency noise that could affect the pitch detection. Then the adaptive filter,
lowpass1, that implements a first-order Butterworth lowpass filter. It receives the
signal from the dcblockerat and the cutoff frequency from the Pitch function,
through the recursive operator ~; on the “backing” path, the Pitch output passes
through a max function that, selecting the maximum between the incoming value
and 100, makes sure that the adaptive filter doesn’t receive a cutoff frequency
minor than 100 Hz. This is useful at the beginning of the running, because the
filter’s initialization value would be 0 Hz otherwise – it would be directly taken
from the pitch’s output before the signal would reach it. You can see finally the
.svg block-diagram in fig. 2.14.

Figure 2.14: The “process” block-diagram of the “Universal Pitch Tracker”.

2.2.5 Notes on the analysis cycles number

How to set, then, the number of cycles to be used in the analysis (the parameter
we’ve called a)? It’s easy to estimate the error between the returned frequency
value and the true one. In fact, the true frequency f can be calculated in this way:

f =
1

T (f)

where T is the period in seconds. A similar formula works for the returned fre-
quency fa, where a is the number of cycles used in the analysis:

fa =
1

Ta(f)

where Ta(f) is the detected period in seconds. This period is calculated, as seen,
with the formula:

Ta(f) =
bM(a, f)c
a · SR

where bM(a, f)c is the function that returns the number of samples detected in
a periods, and SR is the sampling rate. We know that bM(a, f)c has to be an

41 2.2 Pitch tracker

integer, in fact I’ve used the floor function b c inside its symbol now. We can
think then the true signal period T (f) as a function of the “true”, non-integer,
number of samples per a periods, that we can indicate with M(a, f) instead. So
we’ll have, for the true period T (f), the expression:

T ([a,]f) =
M(a, f)
a · SR

=
a ·M(1, f)
a · SR

=
M(1, f)
SR

= T (f)

The true period T (f) is in fact invariant in respect with a. Going on, it’s obvious
that:

M(a, f) =
SR · a
f

where M(a, f) is the (true) number of samples per a periods. As usual, the relative
error Ea(f) should be defined in the following way:

Ea(f)
def
=
|f − fa|

f

Starting from this formula, you can verify that with some substitutions for fa, the
following expression can be found:

Ea(f) =
∣∣∣∣1− a · SR/f

ba · SR/fc

∣∣∣∣ =

=
frac(a · SR/f)
ba · SR/fc

<

<
1

ba · SR/fc
<

<
1

a · SR/f − 1
=

=
f

a · SR− f
def
= Ēa(f)

The last expression is an hyperbole and represents the limit superior of the
Ea(f) function. Because the frequencies we are going to use are minor than the
Nyquist one (i.e. SR

2), we can approximate this function with the following one:

Ēa(f) ≈ f

a · SR
You can notice from this function that the relative maximum error is quite

exactly proportional to 1
a , to 1

SR and to f . In fig. 2.15 you can see a graphical

Chapter 2 Utility objects 42

representation of E1(f) and E10(f) with the relative limit superior Ē1(f) and
Ē10(f) functions. We can compare these results with the average JND (Just
Noticeable Difference) in frequency (see [Roe73]), that represents our ear’s relative
error for pitch detection. It is usually greater than 0.5% (that’s 0.005), so you can
see by the graph that our Pitch Tracker, if set with a = 1, will be more precise
than our perception only for frequencies minor than 200-300 Hz; on the other
hand, if we set a = 10, it will be ok for frequencies up to 2000 Hz, that should be
high enough for wathever foundamental tone.

Figure 2.15: The relative errors of the “pitch trackers” in function of the signal’s
frequency, with a set at 1 (red) and at 10 (blue), at a sampling rate of 44100 Hz.
It is clear the quite-linear behavior of the limit superior functions.

To be more exact, we can ask the condition:

Ēa(f) ≤ JND = 0.005

You can check that this is equivalent to:

a ≥
⌈

0.995 · f
0.005 · SR

⌉
def
= a(f, SR)

So this shows the “recommended” a values in function of the signal frequency
f and the sampling rate SR. The d e symbols represent the ceiling function, that
approximates a real value into the smallest integer not less than it. You can notice

43 2.3 Computational overview

that the higher is the signal frequency f , the higher has to be a, and the higher
is the sampling rate SR, the lower can be a. It is better not to set a to a too
high value because this proportionally delays the analysis data flow and decreases
the time pitch tracking precision. This is why I’ve called the threshold value a
“recommended”. In fig. 2.16 you can see the representation of the function a(f,SR)
for some common SR values.

Figure 2.16: The a(f, SR) function representation, for three typical sampling rates
(showed in blue, green and red), in function of the frequency f .

2.2.6 Max-MSP patch example

Typically pitch trackers are used to drive some sound control. In fig. 2.17 it’s
shown a Max-MSP patch example in which the Universal Pitch Tracker is used
to drive the center frequency of some notch filters. In this way the sound’s first
harmonics can be removed in real time, achieving an interesting noisy effect for
example on the flute sound.

2.3 Computational overview

In fig. 2.18 you can see the output bandwidth of the objects presented in
this chapter. I remind you that the smaller is the output bandwidth, the more
expensive is the object. You can notice that the output bandwidths are sensibly

Chapter 2 Utility objects 44

Figure 2.17: The Max-MSP pitch tracker example patch.

45 2.3 Computational overview

Figure 2.18: The chapter’s objects output bandwidth graph: in order from left to
right, are shown the S&H, the Sinusoid Pitch Tracker (one period measurement),
the Sinusoid Pitch Tracker (several period measurement) and the Universal Pitch
Tracker. As already seen in 1.4 chapter, this graph shows for each object the exact
bandwidth value (outside the bars) and the ratio with a test object (inside the
bars); the test object in this case is a simply copy from a input to a output, and
represents the maximum computational bandwidth for this kind of object (1576
MB/s). The data are been collected on a Pentium 4, 3.66 GHz laptop.

Chapter 2 Utility objects 46

smaller than the one we’ve seen in the Panners chapter. This is because in the
panners the output is double, while here the output is single: thus, intuitively, a
panner will produce more output than a delay line. However, also the ratios with
the respective test objects are in general lower in this case, so we can conclude
that these object are also more expensive.

2.4 Conclusion

This chapter’s object can be used for several purposes. You have already seen
one in 2.2.6 with the Max-MSP example patch, and I’ll show you only some of
the other possible uses, like for the adaptive-FM synthesis techniques (see 3.5 and
??), or for a granulator (see ??).

Chapter 3

Delay lines

Introduction

Delay lines can have many uses, as they deal with a central dimension of the
sound: time. The most obvious use could be for a echo unit, in which the delayed
signal is mixed with the original one. An other common use of delay lines is for
phase-varying effects, like in phasers, flangers or choruses. We are not going to
see any of these cases, principally because other people have already implemented
them in Faust (see [Gra06] for guitar-effects delay lines using). Instead we’ll see
some “countering”, “spacial” and adaptive-synthesis uses. The first section, Delay
line types, is an overview on the possible delay lines defined in Faust; in the
first two subsections are shown respectively the two basic ready-made elements
available for delay lines: @ and rwtable; in the third subsection are shown the
external delay-line functions, as they are defined in the .lib libraries, and are
discussed some other basic functions like the use of the & logical operator or the
<< binary shift. This first section ends with a computational overview of the delay
line functions (3.1.7). In the successive sections then are shown some example
objects using delay-lines: RMS detector (3.2), Interaural Time Difference panner
(3.3), Wave Field Synthesis algorithm (3.4), and Adaptive FM Synthesis using the
delay-line based PM technique (3.5); finally there will be a computational overview
of these examples (3.6) and a brief conclusion.

3.1 Delay line types

Almost all delay lines are not ready-made objects in Faust, you have to define
them first. Several delay line functions are defined in the music.lib and filters.lib
libraries, and we are going to see these definitions first. So when we will use one
of these delay lines we’ll have simply to import the respective library in our .dsp
file.

There are two possible basic objects in Faust that can be used to realize a

47

Chapter 3 Delay lines 48

delay line: the @ and the rwtable. Their syntax and their use are explained in
the “first” Faust Tutorial [GO03] and also in the Quick Reference [Orl07], but let
me briefly remind them here.

3.1.1 The @

The @ is a binary operator that delays a signal by a precise number of samples,
so if you write y = x@10, y will be a 10-samples-delayed copy of x. Unluckily, the
delay amount’s range has to be known by the compiler during the compilation,
so you can use this object only if that delay amount is constant or varies in a
known finite range; for example, it could be a slider, because slider’s values have
the range you set in slider’s definition. But it can not be a counter, for example!
A solution to this problem could be explicitly limiting the counter’s range by using
a min and a max functions, as shown in the following code:

//---1

// The @ example2

//---3

4

a = +(1)~ ;5

y(a,x) = x @ (a : min(100) : max(1)) ;6

process = y(a) ;7

This .dsp works, because the a counter is limited into the range [1, 100]. Here’s
some explanations of the code. The first line defines a counter called a, that
will increment its value by 1 every sample. For an explanation of its definition,
please see [GO03], section 6.2. The min and max are binary functions, so they
have two inputs. You can in fact write min(100,a) and you’ll get the minimum
between these two values. If you write only one argument (min(100)), you’ll have
a function with one input – the other argument. This is called partial function,
and writing a : min(100), in other terms “sending” a into that partial function,
is the same as writing min(100,a). Thus, writing a : min(100) : max(1), like
in the exampling code, is like sending the result of min(100,a) into the second
partial function, and is equivalent to max(min(100,a)). In a similar way, writing
process = y(a) when y is defined with two argument, will create an input to the
object, that will be of course the second y’s value, i.e. x.

The whole process is described by the block-diagram in Fig. 3.1.
Anyway, if you forget to limit the delay range with @ operator, Faust will give

you the following error message:

ERROR : can’t compute the min and max values of : int(proj0(W0)@0)
used in delay expression : IN0@int(proj0(W0)@0)
(probably a recursive signal)

In fact, the problem is that the delay amount is not limited.

49 3.1 Delay line types

Figure 3.1: The “@ example” - block-diagram

3.1.2 The rwtable(n,i,w,x,r)

The other possible object that can be used for a delay line is a read-write-table,
called in Faust rwtable. It’s a collection (“table”) of values that you can read
by an index, and write by an other index. The idea is that we continually write
inside the table the input signal using an appropriate incrementing write-index,
and continually read values from it using a incrementing read-index that is a kind
of delayed version of the first one.

The rwtable has five arguments, respectively:

• n: the size of the table, that has to be an integer value, constant and known
by the compiler at the time of the compilation. It can’t be, for example, a
function of the sampling rate. Sometimes in fact you’ll have the big tempta-
tion of using the SR function inside this argument, but this won’t work! On
the other hand, you can write a so big number you’ll be sure not to overflow
it!

• i: the initializing signal, i.e. the values to be assigned to the table’s cells in
the initial instant. For a delay line you should need simply silence, in this
case you have to write 0.0 for this argument; this is not simply a number
but a signal, an unlimited sequence of 0s, so it’s enough to fill the whole
table. Remember to specify “.0”: only in this way the cells will be ready
for floating point numbers, while if you write simply “0” they will keep only
the integer parts – and in place of a delayed signal you’ll hear only silence
in most cases!. . .

• w: the write-index, that should not exceed the size of the table (but in that
case there won’t be any error message!).

Chapter 3 Delay lines 50

• x: the signal to be written: at every sample the actual value of this signal
is written into the cell pointed by the write-index. Usually this is an input
audio signal, and the write-index increments by one at each sample. So in
that case successive values of the audio signal are written in successive cells.

• r: the read-index, that should not exceed the size of the table, like the
write-index.

So, for example, one could write the following .dsp code:

//---1

// The rwtable(n,i,w,x,r) example2

//---3

4

a = +(1)~ ;5

y(a,x) = rwtable(100, 0.0, a % 100, x, (a-10) % 100) ;6

process = y(a) ;7

It realizes a constant delay line of 10 samples.
In the first line there is the same counter as the previous example; in the

second line a rwtable is called. It has 100 cells, is initialized with silence (0.0),
the write-index is the a counter modulo 100 expression, it writes a signal x, and
the read-index is the (a − 10) modulo 100 expression. The modulo function is
represented in Faust by a %, like in many other programming languages, and it
is used here to make che counter restart from 0 when it has reached 99 + 1 (it will
never reach 100 in this way, and this is ok because cell’s numbers go from 0 to 99).
Finally, in the last line, the process is the partial function y(a), so the ungiven
y’s second argument becomes an input of our object: it corresponds to the x that
is the writing signal inside the rwtable. Thus this object takes an input signal,
writes it cyclically in a table and reads this table with an other cyclical index that
takes 10 samples to reach the current write index; so the input signal is outputed
with a delay of 10 samples. Ok, we made a delay line with rwtable!

You can see the .svg block-diagram of this example in fig. 3.2.

3.1.3 delay(n,d,x)

Let’s see now the external delay line functions, starting from the music.lib
library. You’ll see that all of them are based on the rwtable object: this is because
in this way the delay amount has not to have known limits at the compilation time.

//---1

// The delay(n,d,x) function2

//---3

4

index(n) = &(n-1) ~ +(1) ;5

51 3.1 Delay line types

Figure 3.2: The “rwtable(n,i,w,x,r) example” - block-diagram

Chapter 3 Delay lines 52

delay(n,d,x) = rwtable(n,0.0,index(n),x,(index(n)-int(d))6

& (n-1)) ;7

It’s very similar to the previous example. The differences are the followings:

• the size of the table, n, and the delay amount, d, are let as delay function’s
arguments; so remember that they have to be positive!

• in the read-index expression there is a int function, that returns the integer
part of a number. Of course, we didn’t need it as long as we used constant
integer values: in the previous example the actual d was in fact the fixed
delay amount of 10 samples. If we want to generalize this number then we
have to use the int function, otherwise Faust will give us an error message.

• There are not the modulo functions. At their place, there is the & (AND)
binary operator; in fact these two expressions are equivalent if n is a power
of 2 and a is a positive integer:

a % n = a & (n− 1) if n = 2k

If a is a negative number, then, the result of % in Faust will be also negative,
while the result of & will remain positive. This makes the & operator more
adapt inside an index expression, that has to be of course positive. An other
quality of it is that it’s very cheaper than % in terms of computation. Ok,
you’ll have to remember to use only powers of 2 as n, as long as you don’t
want extremely unprevedible - and noisely - delays!

• This “new” modulo function “jumped” from the rwtable write-index argu-
ment (where it stayed in the previous example into the a expression) into the
index definition. This makes also index a function of n, and does not change
the result, neither in the rwtable’s read-index, where the modulo is now cal-
culated two times. In fact we can “translate” the read-index expression in
the following way (assuming d to be integer):

read-index = (index(n)− d) & (n− 1) =
= ((a & (n− 1))− d) & (n− 1) =
= ((a % n)− d) % n =
= (a− d) % n

where a is the a counter of the previous example. The last expression is then
the read-index of the previous example, once you generalize the fixed values
we used, so you can see that the two read-index expressions are equivalent.
The last passage can be simply demonstrated with the definition of modulo.

53 3.1 Delay line types

There is no process because this is only a function definition. To make it a
true object, one should specify some kind of process. For example, the following
code calls this function, uses a slider as delay amount (in samples) and takes as
input the signal to be delayed using the partial function delay(n,d).

//---1

// The delay(n,d,x) example2

//---3

4

import("music.lib") ;5

d = hslider("delay", 100, 0, 10000, 1) ;6

process = delay(1<<14,d) ;7

Instead of a “normal” number as the first argument of delay, I’ve putted the
expression 1<<14. The << symbol stays for the left binary shift, so I’ve said to
take a binary 1 and to shift it to the left by 14 positions, leaving null the other
bits. This binary number is then 214: remember in fact that this argument has to
be a power of 2. Writing in this way is better for a human understanding: in fact
you immediately recognize that that number is a power of 2, rather than writing
directly the result (16384).

You can finally see the .svg block-diagram of this example in fig. 3.3; you
can notice that the 1<<14 expression is replaced automatically by its decimal
representation.

3.1.4 fdelay(n,d,x)

The fdelay (“fractional delay”) object stays also in the music.lib library, and
it’s a delay line similar to the previous one, except that it can take as delay
amount a non-integer value. It then utilizes a linear interpolation between two
delay functions, evaluated respectively in two successive integer values of d. Let’s
see the code:

//---1

// The fdelay(n,d,x) function2

//---3

4

frac(n) = n-int(n) ;5

index(n) = [...] ;6

delay(n,d,x) = [...] ;7

fdelay(n,d,x) = delay(n,int(d),x)*(1 - frac(d))8

+ delay(n,int(d)+1,x)*frac(d) ;9

I’ve written here only the “new” definitions. There is a frac function that
simply returns the fractional value of a number (by subtracting its integer part

Chapter 3 Delay lines 54

Figure 3.3: The “delay(n,d,x) example” - block-diagram

55 3.1 Delay line types

from it). The fdelay then is a convex combination (like a pondered mean i.e.
a linear interpolation) of two delay functions with two successive d values. So,
if d is an integer, then frac(d) is null and fdelay returns the value of the only
delay(n,d,x) addend. If d is not an integer, fdelay returns an intermediate
value between delay(n,int(d),x) and delay(n,int(d)+1,x), so that the more
close d is to one of that two points, the more important is the respective delay
addend, in a linear way. This linear interpolation is not the “best” interpolation,
and corresponds to a Lagrange interpolation of the first degree. The higher degrees
are implemented in the filter.lib library by Julius O. Smith (see 3.1.6). I’m not
going to show an example for this delay, because the previous one can be used, by
replacing the delay with a fdelay and of course by letting the slider have also
fractional values.

3.1.5 Fixed lenght delay lines

The n length of the rwtable used by these delay lines, that we said has to be
a power of 2, has been fixed for some common delay ranges. For example, after
the definition of fdelay function in the music.lib library, there are definitions like
these:

delay1s(d) = delay(65536,d);
[...]
fdelay1s(d) = fdelay(65536,d);
[...]

These are delay lines with one second as maximum delay. In fact the first argument
of the delay or fdelay function, that is the length of the rwtable used, is fixed
here to 65536 (that is 216, the same as writing 1<<16). With a common sampling
rate of 44100 Hz, you’ll be sure that with such a table length your read-index
won’t “surpass” the write one after the modulo operation, as long as your delay
amount is less than 1 second (and even more), that in this case corresponds to
44100 samples. If your sampling rate is greater than the rwtable’s length −1, for
example 96000 Hz, then with a delay amount set to 1 second, your read-index will
have the value:

r = (w − d) % n = (w − 96000) % 65536 = (w − 30464) % 65536

that at this sampling rate corresponds to a delay amount of only 0.32 seconds.
So there will be an aliasing effect due to the modulo function. To prevent this,
if you are going to use high sampling rates, you should choose a bigger n amount
inside the delay lines (and you shouldn’t use the ready set delay functions here
described). The other preset delay lines have the following max delay amounts:
2, 5, 10, 21, 43 seconds. So you could call for example the function fdelay43s(d)
for having a fractional delay line with up to 43 seconds as delay amount d.

Chapter 3 Delay lines 56

3.1.6 Lagrange and Thiran allpass interpolative delay lines

Finally, in the filter.lib library by Julius O. Smith, you can find some other frac-
tional delay lines, based on Lagrange and Thiran allpass interpolation. I’m not
going to explain here their definitions, but you can find in the library’s references
the theoretic explications (see [Smi07]). I’m going to show here only the way these
functions have to be used. There is a certain number of applications in which you
have a fractional delay amount and you need a very accurate interpolation, so the
linear fdelay interpolation is not enough “smooth” (its first derivative is in fact
discontinue). An example for this need is shown later in this chapter in a Phase
Modulation application (see 3.5). Thus you can use these interpolative delay lines
that can simulate better the “unknown” values of a signal between two successive
samples.

The Lagrange interpolative delay line functions have the following names:
fdelay1, fdelay2, fdelay3, fdelay4 and fdelay5 and the arguments are the
same as the fdelay function (n,d,x). The number inside their name represents
the Lagrange interpolation order, and usually the higher it is, the more accurate
and well sounding is the interpolation. There are some differences between even
and odd orders important in some situations, so you should check in these cases
what is the requested order. You can read in the library that each of these func-
tions has a minimum delay value allowed, for example in fdelay4 d should be at
least 1.5 (in samples). Remember then that it’s always needed a power of 2 as n
argument - because all of these functions call the old delay.

Also the Thiran allpass interpolative delay line functions have several orders
and their name are: fdelay1a, fdelay2a, fdelay3a and fdelay4a. They have
exactly the same syntax of the Lagrange interpolative delay line functions, and so
the same as fdelay. Check in the library the minimum delay value allowed, like
in the Lagrange case. As already said, see later in this chapter for an example of
Lagrange interpolative delay lines.

3.1.7 Computational overview

To conclude this overview on the delay lines available in Faust, let’s take a
look to their computational cost. In fig. 3.4 you can see the output bandwidth of
these objects. It’s easy to see from the graph that the higher is the interpolation
order, the more expensive is the delay line, and that in general the Lagrange
interpolation is less expensive than the Thiran one.

3.2 RMS

The RMS is an object that returns the Root Mean Square (or quadratic mean)
of a signal. So it has to sum the squares of the successive values of the signal,
divide that sum for the number of values and calculate the square root of that

57 3.2 RMS

Figure 3.4: The delay line types - output bandwidth graph. The test object is a
simply copy from an input to an output, as seen in 2.3.

Chapter 3 Delay lines 58

value:

RMS(xk) =

√√√√√ k∑
i=k−n

x2
i

n

3.2.1 RMS with fixed n

A code that realizes the RMS algorithm with a fixed n value is the following:

//---1

// The RMS example - fixed n2

//---3

4

S(n,x) = +(x - x @ n) ~ ;5

Quad(x) = x * x ;6

RMS(n) = Quad : S(n) : /(n) : sqrt ;7

process = RMS(1000) ;8

I’ve used the @ operator in S(n,x) to subtract from the sum the value that
the x signal had n samples before. In fact the S(n,x) function takes its precedent
value (see the recursive composition operator ~), adds to it the current x value
and subtracts the “old” x@n value. For the first n samples the x@n expression
will be simply null, so the function will be adding to itself the x value sample
after sample. Then it will subtract the x@n value, so since that instant it will
always keep the sum of the last n x’s samples. The Quad(x) function is a simply
squaring function: I could write pow(x,2) instead of x*x, but the * function is
very much cheaper than the pow one. Then, the RMS(n) function is a sequenced
composition of the functions Quad, S(n), /(n) and sqrt. Note that all of them
have one input and one output: Quad has no argument so it takes an inlet as it,
S(n) has not the second argument so it takes an input too and so on. So, being
a sequenced composition of functions with one input and one output, also RMS(n)
has one input (the x of the Quad function) and one output (the sqrt’s one). In
process then I’ve called that function with n= 1000, so this code will calculate
the RMS of 1000 samples, updating its value every sample. You can see the .svg
block diagram in fig. 3.5.

3.2.2 RMS with changing n

If we want the user to choose the n value, we have to do several changes to our
code. We can’t simply assign a slider’s value to n, because if it decrements while
the sum S(n,x) is running, then some addends will remain “forever” inside – the
x@n won’t reach them anymore. We have to insert some conditional statements, so
that if the n value changes, then the S(n,x) sum has to restart from zero. To do
so, we have to multiply somewhere by the logical condition n’==n: the operator ’

59 3.2 RMS

Figure 3.5: The “RMS (fixed n) example” - block-diagram

Chapter 3 Delay lines 60

is a delay line of one sample (the same as mem or @(1)), so that expression will be
true (value 1) if n is not changed during the last sample, 0 else. This is the kind
of information we need, so let’s see what the code has became:

//---1

// The RMS example - changing n2

//---3

4

n = hslider("number of samples", 100, 20, 44100, 10) ;5

Count(n) = min(+(1), n+1) ~ *(n’==n) ;6

S(n,x) = +(x - (x@n : *(Count(n)>n))) ~ *(n’==n) ;7

Quad(x) = x * x ;8

process = Quad : S(n) : /(n) : sqrt ;9

Let’s focus on the S(n,x) function first: I’ve inserted the *(n’==n) expression
into the recursive pattern; thus, when n changes, this expression multiplies by 0
the S(n,x) value, else it leaves it untouched (multiplication by 1). But this is not
enough, because if n changes, it’s not sufficient for S(n,x) to restart from zero: we
have also to forbid the subtraction by the x@n expression, until exactly n samples
have passed. To do so, we need an other conditional statement that multiplies
the x@n expression by the condition that a counter (Count(n)) has overflew the n
value: *Count(n)>n.

These were the changes to the S(n,x) function; let’s see now the counter
definition. It recursively sums 1 to itself as far as n remains constant (see the
*(n’==n) also here), if n changes it restarts from 0. But when it reaches the n+ 1
value, it remains constant (if n doesn’t change) because a min function selects
the minimum between the +(1) incrementing and the n+1 value. This because
a counter should not grow unlimitedly, else it would crash the host application
in a certain time. In our case, the value of n + 1 is sufficient to trigger the first
conditional statement inside the S(n,x) definition, and there is no reason for
Count(n) to grow further.

The rest of the code is identical to the previous version, except that there is a
slider assignment. You can see some .svg block-diagrams in fig. 3.6 and fig. 3.7.

3.3 ITD panner

Let’s see now a “panning use” of a delay line. In fact, when a sound source is
not at the center of the auditive scene, there is a slight delay between the two ears’s
received signals, due to the different distances between each ear and the sound
source. This phenomenon is called Interaural Time Difference (ITD) and has an
important role in defining the spacial position of a sound source. A good panner
should introduce also this kind of information in addiction to the classic Interaural
Level Difference (ILD), which was the central goal of the Panners chapter’s object.

61 3.3 ITD panner

Figure 3.6: The “RMS (changing n) example” - block-diagram (“S” block)

Chapter 3 Delay lines 62

Figure 3.7: The “RMS (changing n) example” - block-diagram (“Count” block)

63 3.3 ITD panner

Let’s see a scheme representing the typical geometrical configuration of a sound
source and a listener’s ears (fig. 3.8).

Figure 3.8: The geometrical configuration of a sound source and a listener’s ears.
The angle α is set like the usual panner control: minimum if the source is com-
pletely to the left and maximum in the opposite case, but moving in a range of
[0, π] instead of [0, 1]. The source distance from the center of the listener’s head
is constant (r) and the ears distance is d. The two read lines represent the two
distances between the source and each of the two ears, and are a function of r, d
and α.

It’s easy to calculate the distances between the source and each of the two
ears, as a function of the angle α, the source distance r and the ears distance d:

dL(r, d, α) =

√
(r · sin(α))2 +

(
r · cos(α)− d

2

)2

dR(r, d, α) =

√
(r · sin(α))2 +

(
r · cos(α) +

d

2

)2

Then, we are interested in the difference between these two distances, and after
some simplifications this is:

delta(r, d, α) = dL(r, d, α)− dR(r, d, α) =

=

√
r2 − d · r · cos(α) +

d2

4
−
√
r2 + d · r · cos(α) +

d2

4

Chapter 3 Delay lines 64

This difference is then converted into time delay by dividing it by 343 m/s,
that is the sound speed in air. This time delay has to be given then to a delay
line as a number in samples, thus we have to multiply it by the sample rate. The
sample rate, as already seen, is returned by the function SR, defined in the library
math.lib .

So, the whole code is the following:

//---1

// ITD panner2

//---3

4

import ("math.lib") ;5

import ("filter.lib") ;6

d = hslider("Ears distance (cm)",17,15,20,0.1) / 100 ;7

r = hslider("Object distance (cm)",100,15,5000,1) / 100 ;8

alpha = hslider("Angle (degrees)",90,0,180,0.1) * PI / 180 ;9

10

quad(x) = x * x ;11

delta(r,d,alpha)=sqrt(quad(r) - d*r*cos(alpha) + quad(d) / 4)12

- sqrt(quad(r) + d * r * cos(alpha) + quad(d) / 4) ;13

14

del(r,d,alpha) = delta(r,d,alpha) / 343 * SR ;15

process = <: fdelay3(64, max(del(r,d,alpha), 0) + 1), fdelay3(64,16

max(-del(r,d,alpha), 0) + 1) ;17

Let’s take a look to the process definition: an input signal is split into two
copies with different delay amounts. Notice that we use here the fdelay3 function
(3rd-order Lagrange interpolation), that has to have a delay of at least 1 sample
(see the comments in its definitions in filter.lib); so a sample is added inside the
delay argument of fdelay3. The max function inside the same argument is used to
assign positive delays to the left channel, leaving the other one untouched (that’s
the case dL(r, d, α) ≥ dR(r, d, α) i.e. 90◦ < α ≤ 180◦) and symmetrically negative
delays to the right channel with inverted sign (i.e. 0◦ ≤ α ≤ 90◦). This because in
the first case the signal has to arrive to the right channel first, so we have to delay
the signal assigned to the left channel, and in the second case just the opposite.
The maximum delay length then is set as to be greater than the intuitive maximum
value of the del(r,d,alpha) function, i.e. when the sound source is completely
at one side and the difference delta(r, d, α) of the distances is equal obviously to
the ear’s distance d. Its maximum slider’s value is then 20 cm (0.2 m) that are
covered in 0.58 ms by the sound; this time is equivalent to about 56 samples at a
sampling rate of 96 kHz, so we can choose 64 as maximum delay length because
it’s the successive power of 2 available.

Notice finally the quad(x) function that realizes the square power of a number.
Its definition is here not so relevant – we could write a multiplication every time

65 3.4 WFS

we needed it instead of calling this function. But it will really help us when we’ll
have more complex bases (like already in the precedent RMS example).

In fig. 3.9 you can see the process representation, but the internal block
diagrams are too complex to be shown without occupying a dozen of pages! And
for the understanding of the Faust code the block diagrams are not so necessary
in this case.

Figure 3.9: The ITD panner - block-diagram (process only)

3.4 WFS

Let’s see an other “spacial” use of the delay lines. The Wave Field Synthesis
(WFS) technique uses a line of speakers to simulate the wave field of a virtual
source located behind this line. The idea is to use the Huygens principle and
to think each speaker like a window in a wall: the sound coming through these
windows will have the amplitude and the phase that a listener would hear in
that points. At a certain distance from this wall, then, all these windows can
approximate an infinite number of point-shaped sound sources; according to the
Huygens principle, this configuration generates a wave field equivalent to the one
generated by an unique source placed behind the wall. So a listener will hear
a virtual sound source placed in some region of the space and even if he moves
this region of space won’t change (it won’t follow the listener’s movements) like a
real sound source located in the space. The more speakers are used, and the less
reverberating is the room, the more appreciable will be this effect. All we have
to do is to calculate for each speaker what has to be the scaling amplitude factor
and the correct delay amount, and possibly to generalize this results in therms of
the speaker being considered. The scheme in fig.3.10 illustrates the geometrical
configuration of this problem.

First of all, we have to choose a coordinate system. I’ve used the one illustrated
in fig. 3.10: the speakers are aligned along the x axis, the origin is the center of
the first speaker from left, the y axis is oriented in the opposite direction with
respect to the listener and the unit is 1 m. So sound source’s virtual positions will
have positive ordinates, and listener’s positions negative ones.

Chapter 3 Delay lines 66

Figure 3.10: The WFS geometrical problem

We can now express each speaker’s position as a function of its index, going
from 1 to n (where of course n is the number of the speakers we are using) and of
the speaker-to-speaker constant distance d in meters:

Si(d) : (d · (i− 1), 0) i = 1..n

The length of the speakers’s line is of course equivalent to the Sn abscissa, so
it’s d · (n− 1). Then, let’s say (x, y) are the virtual source’s coordinates. For each
speaker we can now write its distance from the sound source position:

Di(d, x, y) =
√

[x− d · (i− 1)]2 + y2

Now, we know that the sound pressure decays as 1
r where r is the distance from

the sound source (its intensity decays in fact as 1
r2

, and as said in 1.2, I ∝ A2,
where A is the average amplitude). So we have to use for each speaker Si a level
scaling factor Li proportional to 1

Di
, for example:

Li(d, x, y) =
1

Di(d, x, y)

In this case a Di value minor than 1 will amplify the signal, so to avoid clipping
we have to ask y – the virtual source’s ordinate – not to be minor than 1. Instead
the delay amount Deli has to be proportional to Di, as seen in the ITD section
(see 3.3):

Deli(d, x, y) =
Di(d, x, y)
343 m/s

Now let’s see the Faust code that realizes the WFS with a generic number n
of speakers.

//---1

// WFS2

67 3.4 WFS

//---3

4

import("math.lib") ;5

import("music.lib") ;6

import("filter.lib") ;7

8

d = hslider("Speaker-to-speaker dist.(m)",0.5,0.1,10,0.1) ;9

x = hslider("x (m)",0,0,10,0.1) : smooth(tau2pole(0.001)) ;10

y = hslider("y (m)",1,1,100,0.1) : smooth(tau2pole(0.001)) ;11

nSpeakers = 8 ;12

13

Quad(x) = x * x ;14

D(d,i,x,y) = Quad(x - (i - 1) * d) + Quad(y) : sqrt ;15

16

// Amplitudes assignments:17

Amp(d,i,x,y,sig) = sig / D(d,i,x,y) ;18

OutA(d,1,x,y,sig) = Amp(d,1,x,y,sig) ;19

OutA(d,i,x,y,sig) = OutA(d,i-1,x,y,sig), Amp(d,i,x,y,sig) ;20

21

// Delay amounts assignments:22

R(d,i,x,y) = fdelay1s(D(d,i,x,y) * SR / 343) ;23

OutR(d,1,x,y) = R(d,1,x,y) ;24

OutR(d,i,x,y) = OutR(d,i-1,x,y), R(d,i,x,y) ;25

26

// sequence composition:27

Out(d,n,x,y,sig) = OutA(d,n,x,y,sig) : OutR(d,n,x,y) ;28

process = Out(d,nSpeakers,x,y) ;29

So, first some libraries are imported: math.lib for the SR definition, music.lib
for the fdelay1s definition and filter.lib for the smooth and tau2pole definitions.
Then the user interface is generated, with an interpolation on the x and y sound
source’s coordinates. In the nSpeakers line you can specify the number of speakers
you’re going to use, but this choice has to be made before the computation, so
you can’t assign a slider for this quantity: this because of the pattern-matching
(see later in this section). The distances Di are then computed, using the already
seen function Quad (used in RMS - see 3.2.1 - and in ITD panner - see 3.3). Then
there are the amplitudes assignments. The Amp function is a copy of the incoming
signal (sig) scaled with the Li coefficient.

Pattern-matching For OutA is then used a pattern-matching function defini-
tion. Let me explain this concept with a substitution: if we call foo(i) the partial
function OutA(d, •, x, y, sig), then the pattern matching says that:

1. foo(1) = (something);

Chapter 3 Delay lines 68

2. foo(i) = somefunction(foo(i− 1)).

You can see two definitions, the first one is used when the argument is 1, the
second one is used for a generic i value as argument (so when i 6= 1). So foo(i)
is defined in a recursive way, and is computed by Faust during the compilation.
Returning to the OutA function, its definition is represented in fig. 3.11.

Figure 3.11: The pattern-matching representation of the function
OutA(d, i=4, x, y, sig). Each color represents a function call. At each step the
index i (in bold style) decrements because of the OutA’s “generic-i-definition”,
until it reaches the value 1. At that point it’s used the “i-equal-to-1-definition”
of the same function instead, and the recursive calls do terminate. The resulting
pattern in this case is a parallel pattern of 4 Amp functions with increasing i
index; for a generic OutA(d,n, x, y, sig) the resulting pattern will have n Amp
functions.

Thus, the pattern-matching generalizes a parallel composition of n Amp func-
tions with an increasing index as an argument; thus OutA generates a collection
of n sig signal versions scaled accordingly to each speaker’s distance from the
virtual sound source.

In the successive delay amounts assignments there is a similar pattern-matching
defined function, OutR, which in the same way as OutA generalizes a parallel com-
position of n R functions. These functions are simply delay lines, like already
seen in the ITD Panner (see 3.3), but this time using a simpler fdelay1s that
realizes only a 1st-order Lagrange interpolation. Finally, the function Out realizes
a sequence composition of OutA and OutR, with the second argument, n, passing
the number of the pattern-matching steps to both of the functions. For example,
calling the Out function with 8 as second argument will generate 8 parallel Amp

69 3.5 Adaptive FM synthesis (delay-line based PM technique)

functions in sequence with 8 R functions. Thus, this is the processing chain for
each speaker: an amplitude attenuation and a delay line. In fig. 3.12 a “block-
diagram” equation shows the passages from the Out function call to the speaker’s
processing chains.

In fact, the process .svg block-diagram is shown in fig. 3.13 and shows the 8
processing chains in parallel – in fact 8 is the set value for the nSpeakers constant
at the beginning of the code, of course you can change it. It’s not shown here,
but obviously the parameters from chain to chain are different, depending to the
chain’s index.

You can finally see some mathematical representations of the sound field gen-
erated by a virtual sound source positioned in (1, 1), with 8 speakers at an equal
intra-distance of 0.53 meters. In fig. 3.14 the coordinate system is the one already
described for this object in fig. 3.10, with lines of equal intensity showed only in
the real space (negative ordinate values), and the speakers aligned on the x axis.
You can notice that if you are far enough from the speakers (let’s say at least 2
meters in this case) the equal intensity lines have approximately the same shape
of the circular ones produced by a single source placed in the virtual source po-
sition. In fig. 3.15 then, only the coordinate system is changed: while the x axis
remains the same, the y one shows the distance from the virtual source position
instead that from the speakers line. In this way, changing the x value and leaving
the y constant, would correspond in the other coordinate system to moving on a
circular trajectory around the virtual source, at a constant distance y. Moving in
this way should not determine a change in the perceived sound intensity, so the
equal intensity lines in this new coordinate system should be exactly horizontal.
You can notice instead that if you are too close to the virtual source position,
especially under 4 meters, the speaker placed at the opposite side with respect
to the virtual source will be too loud. In the new coordinate system in fact, the
virtual source stays in (1, 0), and the S8 speaker – the last one on the right in this
example – is placed in (8 · 0.53,

√
(8 · 0.53− 1)2 + 1) ≈ (4.24, 3.39). Thus, as you

can see, if you are closer than 4 meters from the virtual source, to hear the same
intensity, you have to go farer in front of the S8 speaker than in front of the other
ones. This means that that speaker, the one opposite to the virtual sound source,
is too loud at that distance; at a greater distance, in fact, this effect is very smaller
and in a central x range we can consider the equal intensity lines horizontal – as
we expect them to be in a perfect simulation. However, in this representation is
not taken into account any interference effect.

3.5 Adaptive FM synthesis (delay-line based PM tech-
nique)

This object is the Faust translation of one of the two Adaptive FM synthesis
algorithms described in [LTL08]. The one we are interested in, and you can easily

Chapter 3 Delay lines 70

Figure 3.12: A “block-diagram” equation showing the passages from the “Out”
function call to the speaker’s processing chains. The “Out” second argument,
labelled “n”, controls the number of the final processing chains, so it should be
equal to the number of speakers used. The first passage uses only the “Out”
function definition, the second one expands the pattern-matching used in “OutA”
and “OutR” functions definitions, and the last passage is a particular property of
sequence and parallel operators that occurs when the number of outputs of the
first system of parallel objects is the same than the number of inputs of the second
system, and can be demonstrated using the respective graphs equivalence.

71 3.5 Adaptive FM synthesis (delay-line based PM technique)

Figure 3.13: WFS “process” block-diagram.

Chapter 3 Delay lines 72

Figure 3.14: WFS mathematically obtained sound field for a virtual source placed
in (1, 1). Coordinate system as usual.

Figure 3.15: WFS mathematically obtained sound field for a virtual source placed
in (1, 0). Coordinate system with x as usual and y showing the distance from the
virtual sound source.

73 3.5 Adaptive FM synthesis (delay-line based PM technique)

understand why, uses the so called Delay-Line Based Phase Modulation technique.
The Faust code for the other technique, called Phase Modulation Through Het-
erodyning, will be presented in....

The Adaptive FM synthesis can be used to change the timbre of an arbitrary
input signal, to make it synthesizer-sounding and to easily generate transitions
between the original (natural) sound and the processed one. Both the techniques
require a pitch detection on the input signal; the one we are going to use is the
already seen Faust object Universal Pitch Tracker, explained in section 2.2, that
returns the signal’s pitch analyzing its zero-crossing rate. I remind you that the
main function was Pitch(a,x), where a represents the number of cycles to be used
in the analysis, and x the input signal. The algorithm consists in a d(t) adaptive
delay line on the input signal:

d(t) =
I

πfc
[0.5 cos(2πfmt) + 0.5]

where I is the index of modulation, fc is the career signal frequency (the input
signal’s one) and fm is the modulator’s frequency. The fm can be characterized
through the expression:

fm =
fc
rc:m

where rc:m is the ratio between fc and fm, and will be specified by the user.
The cos function inside the d(t) expression can be replaced with a sin because
the modulator’s phase is not important in this application, and between the two
function there is simply a phase difference of π

2 . Thus, as the authors suggest, we
are going to use a Lagrange interpolating delay line of order 3, and an interpolating
oscillator, defined in music.lib and called osci. This object is simply a convex
combination of two consecutive values of a sinusoid cycle stored in a table. The
Faust code for the whole object is then the following:

//---1

// aFM/PM (delay line based)2

//---3

4

import("math.lib") ;5

import("music.lib") ;6

import("filter.lib") ;7

8

// S&H:9

SH(trig,x) = (*(1 - trig) + x * trig) ~ ;10

11

// pitch tracker:12

Pitch(a,x) = a * SR / max(M, 1) - a * SR * (M == 0)13

with {[...]} ;14

PtchPr(a) = dcblockerat(80) : (lowpass1 : Pitch(a)) ~ max(100);15

Chapter 3 Delay lines 74

16

I = hslider("Index of modulation",0,0,5,0.001) ;17

r = hslider("c:m",1,0.1,5,0.001) ;18

19

// modulator:20

del(r,I,x) = x : fdelay3(1 << 17, dt + 1)21

with {22

k = 8.0 ; // pitch-tracking analyzing cycles number23

fc = PtchPr(k,x) ;24

dt = (0.5 * osci(fc / r) + 0.5) * I / (PI * fc) *SR ;25

} ;26

process = del(r,I) ;27

At the beginning of the code, some libraries are imported: math.lib for the
SR and PI (π) functions, music.lib for osci and filter.lib for the filters used in the
pitch detection and for the fdelay3 definition. Then you can find the definitions
of SH (see 2.1) and Pitch (see 2.2). Instead of the original process of the last
one, I’ve defined the new function PtchPr – of course, process is reserved for
the modulator in this object. Then the user interface is defined, with the two
sliders for the index of modulation (variable I) and the c:m ratio (variable r).
The modulator is then defined, with the function del(r,I,x), in which x is the
input signal. This function consists in a delay line with Lagrange interpolation
of order 3 (fdelay3, see 3.1.4), applied to the signal x, with a maximum delay
of 217 samples (1<<17, see 3.1.3) and a delay amount of dt + 1 samples, where
dt is defined in the with{ } and the 1-sample adding is because this order of
Lagrange interpolation needs a minimum delay of 1 sample (see the comments
in fdelay3 definition inside filter.lib). In the with{ } you can find the constant
k, that will be used to set the analyzing cycles number in the following PtchPr
function call; remember that you have to give this constant as a floating point
number (argument discussed in 2.2.3). Then is defined fc (fc), that will be the
detected pitch of the input signal x with k as analyzing cycles number, as just
say, instead of the original slider value a we have used in the pitch tracker stand-
alone object (2.2.2). Then dt (d(t)) is defined with the expression shown at the
beginning of this section, and its value (for that expression in seconds) is converted
in samples through the final multiplication *SR: don’t forget in fact that the delay
lines we are using want always a delay amount expressed in samples, and not in
seconds. You can notice that we are using osci(fc/r), that returns a sinusoid
of frequency fc

r = fm instead of the cosine wave of the same frequency asked
in the original d(t) expression. But as we have already said, in this object the
modulator’s phase is not important and a sinusoid works as well as a cosine wave.
Finally, the process calls the del(r,I,x) function without the last argument (the
signal x), so it will become an object inlet. That’s all!

I’ve tried this object with a flute sound as input signal, and it changes its sound
preserving the original pitch and amplitude. With an integer “c:m” ratio value you

75 3.6 Computational overview

will hear an harmonic sound, with a non-integer value you will hear inharmonic or
semi-harmonic sounds; in both cases, the difference with the original sound will be
proportional to the I value, and the original sound will be heard if you set I = 0.

3.6 Computational overview

In fig. 3.16 you can see the output bandwidth of the last objects we have seen in
this chapter. In this case the number of output channels is not the same for all the
objects, so different test objects are been used to calculate the ratios. As we have
already noticed, objects with two output channels have in general a greater output
bandwidth than objects with only one output (see 2.3). But when the number
of output channels is greater, then the things change and the time requested to
write the outputs can limit the output bandwidth. In fact, the test used for the
WFS object (with 8 outputs) had an output bandwidth minor than the 1-output
test object’s one (707 vs. 1576 MB/s). Finally, part of the “expensiveness” of the
PM aFM object is derived from the pitch tracker’s one (see 2.3), obviously because
it is used inside the PM aFM code.)

3.7 Conclusion

We have seen in this chapter only a minimal part of the possibile uses of delay
lines. We will see an other one later, inside the granulator object, but first we
need some “randoming” functions. In fact this will be the content of the next
chapter. . .

Chapter 3 Delay lines 76

Figure 3.16: The chapter’s example objects - output bandwidth graph. The test
object depends from the number of output channels of each object. The objects are
respectively: RMS with fixed number of analyzing samples, RMS with changing
number of them, ITD panner, WFS set with 8 output channels, adaptive FM
synthesis (delay-line based PM technique).

Chapter 4

Noisers

Introduction

Noisers are very used objects in electronic music, as sound or as parameter
generators. They output random values, usually in a certain range, and with a
certain distribution. A basic noiser has been already described in [GO03], but
we are going now to modify that object and obtain different ones: starting from
the reminding of that basic noiser, we’ll implement a multichannel one with some
pattern-matching, three normal-distribution ones and a Bernoulli-distribution one.
Finally we’ll use the basic noise to get a dithering adder objects. As usual, a
computational overview and a brief conclusion will end the chapter.

4.1 Uniformly distributed mono noiser

In [GO03] a basic noiser has been presented, and since we’re going to modify it
to obtain all the successive noising objects, I’m going to remind you that noiser’s
code:

//---1

// Uniform mono noiser2

//---3

4

RANDMAX = 2147483647 ;5

random = +(12345) : *(1103515245) ~ ;6

noise = random * (1.0 / RANDMAX) ;7

process = noise ;8

This object produces uniformly distributed random numbers, through the “un-
predictable” wraping of the big variable values stored in random from positive to
negative, and the successive normalization in noise, that fits that variable values

77

Chapter 4 Noisers 78

into the range [-1,1]. The method at the base of this algorithm is called of the
Linear Congruential Generator, and is widely used among compilers. In general,
this kind of generators have the following recurrence relation:

Xn+1 = (aXn + c) mod m

In our case, we have the following parameters:

a = 1103515245
c = 12345

m = 232

Where m is not set, is “automatic” because of the 32 bits integer format. The
choice of the other parameters is made so that all the m possible values are re-
turned before the first value is repeated1 – and then all the output pattern will be
repeated periodically. Thus, due to the integer format, this generator will return
numbers between −231 and 231 − 1, and by dividing them by RANDMAX (that is
231− 1), we normalize this range to [-1,1]. While the maximum pre-normalization
random value is in fact equal to RANDMAX, the minimum one as you can see is
slightly lower, but due to the loss of precision of the floating point format, the
result of the division of that extreme by RANDMAX will be rounded to -1. But this
means that -1 will be a bit more probable than the other values.

However, the output of this object is a stream of pseudo-random values, chang-
ing at sampling rate, and so perceived as a white noise. If we needed a random
controller instead, we could use the S&H object with some kind of triggering signal
(see 2.1 for S&H description and ?? for a coupled use of it with a noising object).

A particular property of this object is that it’s fully-deterministic, so the first
returned number will be always −0.695191, the second always −0.344851, the third
always 0.106763 and so on. It’s obvious, if you try it tomorrow nothing will be
changed in the functions and the returned values will be always the same. For the
same reason, if I put 10 copies of that object simply in parallel, then my outputs
will be ten −0.695191 for the first sample, ten −0.344851 for the second one, and
so on: the output channels will have an identical values stream. So, if you need
for example a stereo noiser, you can’t simply put two of these noisers in parallel:
the result would be a mono stream split into two channels, that is an other thing
than a true stereo noiser – you need in fact two different output streams. But
don’t worry: a multichannel noiser development is possible and is the topic of the
next section.

1see [Knu97]

79 4.2 Uniformly distributed multichannel noiser

4.2 Uniformly distributed multichannel noiser

The idea is that we assign n successive Uniform mono noiser ’s values to n
output channels, so that we obtain n channels’s 1-sample values from 1 channel’s
n-samples values. So we have to build a chain of n random functions in sequence,
with the recursion only between the last chain’s random and the first one. This
sequence composition should also output the partial results, not only the last
chain’s element value. So it has to split each random output into two “wires”, one
linked to the successive element, the other one outgoing from the chain to return
each of the n random numbers. We can use the pattern-matching technique to
define this kind of special sequence composition:

S(1,F) = F ;
S(i,F) = F <: S(i-1, F), ;

The two arguments of this S function are the number of functions to be used
in the chain (i) and the function to be used (F). Notice the “general” S(i,F)
definition: from F (that in our case will have a mono output) there is a split (<:),
to the successive parallel composition; this can be seen as a unique block with two
inputs, the one that goes into the S(i-1, F) function (one because the F we are
going to use has one input) and the one that goes to the Identity function () and
so outside our chain. The result of this pattern-matching is showed in fig. 4.1.

Figure 4.1: The S(4, F) pattern matching scheme. The resulting object has 4
outputs, because at each step the F function output is split: a wire goes to the
S(i-1, F) block and the other one goes outside the object (trough the Identity
function).

Chapter 4 Noisers 80

This special sequence operator will be used to build our randoms chain. Now
we have to redefine the random function, because we’ve said the recursion has to
be only between the last chain’s random and the first one. So we’ll write simply:

random = +(12345) : *(1103515245) ;

Thus, our chain can be simply written in the following way:

chain(n) = S(n,random) ~ ;

where n is the number of output channel we need.
The last thing we need to do is to normalize the random values (to fit them into
the range [-1,1]), by dividing them for RANDMAX. As we have n outputs now, we
can’t simply put a /(k) function in sequence with the chain(n) function – we
would divide only one output in that way, because the /(k) function has only one
input. We need a dividing function Divide(n,k) that takes n inputs, divide each
of them by k, and outputs the n results separately: you can verify this is done by a
parallel composition of n /(k) functions. Ok, this can be made by a single-string
definition in Faust!

Divide(n,k) = par(i, n, /(k)) ;

The par(a,b,F) construction makes a parallel composition of b ‘Fa’ functions,
with a running from 0 to b−1. It has been presented in [Orl07], section 5.6. Since
in our case the dividing functions are identical, we don’t use the information of
their running index. So, with the string just showed, we build a parallel composi-
tion of n ‘/(k)’ functions.
Finally we have to sequencially compose the chain(n) function with the Divide(n,k)
one, replacing k with RANDMAX that was the original normalizing number. I’ll call
this function NoiseN(n) (whose name stays for ‘noise-on-n-channels’):

NoiseN(n) = chain(n) : Divide(n,RANDMAX) ;

Then, in the process definition, the current number of output channels needed n
will be set. Let’s summarize the whole code now:

//---1

// Uniform multichannel noiser2

//---3

4

// Special sequence function:5

S(1,F) = F ;6

S(i,F) = F <: S(i-1,F), ;7

8

// Multichannel division function:9

81 4.3 Normally distributed mono noiser

Divide(n,k) = par(i, n, /(k)) ;10

11

random = +(12345) : *(1103515245) ;12

RANDMAX = 2147483647.0 ;13

chain(n) = S(n,random) ~ ;14

NoiseN(n) = chain(n) : Divide(n,RANDMAX) ;15

process = NoiseN(3);16

This is a 3-channel noiser then. You can finally find the relative .svg block-
diagram in fig.4.2.

4.3 Normally distributed mono noiser

If you are going to use our noiser as a random generator, then for many appli-
cations you’ll find it terrible! If you are going to assign, for example, its output
to a oscillator frequency (with some kind of mapping I hope!), then the result
won’t be very natural. In fact you might expect the randomized frequency to be
set with different probability to central values rather than to extreme ones. The
uniformly distributed noise then is not what you need, because each value has the
same occurrence probability. The normally distributed (or Gaussian distributed)
one is a better choice, since the outputed values follow a Gaussian-distributed
probability, centered in our case in 0, and with the typical bell shape. This Gaus-
sian distribution can be obtained in several ways from the uniform one, but many
of these ways (for example the Polar or the Ziggurat algorithms) use the rejection
sampling technique, in which some generated values have to be rejected, and for
this reason the technique is not usable in a synchronous dataflow language like
Faust. We are going to use two “direct” techniques instead, the first applying
the Central Limit Theorem, the second using the Box-Muller transform.

4.3.1 Central Limit Theorem technique

The Central Limit Theorem states that the sum of a large number of indepen-
dent and identically-distributed random variables will be approximately normally
distributed if the random variables have a finite variance. Is this our case? Since
we are going to use uniformly distributed variables Ui, we know that their variance
is:

V ar(Ui) =
(b− a)2

12
where a and b are the range extremes of the Ui random variables. Since we will
use for the Uis the values returned by the code seen in 4.2, we know that this
range is [-1,1]. Thus in our case we’ll have:

V ar(Ui) =
1
3
<∞

Chapter 4 Noisers 82

Figure 4.2: The “Uniform Multichannel Noiser” block-diagram.

83 4.3 Normally distributed mono noiser

So we can apply the Central Limit Theorem. We have just to sum a “large number
n of independent and identically-distributed (in our case uniformly distributed Ui)
random variables”. Accordingly to the Central Limit Theorem, if we define a new
variable Zn in this way:

Zn =
Sn − nµ
σ
√
n

with Sn =
n∑
i=1

Ui

where µ and σ2 are respectively the mean and the variance of the Ui, then Zn
converges in distribution towards the standard normal distribution (in which the
mean is 0 and the variance is 1). Since we are using uniformly distributed variables
in the range [-1,1], their mean µ is 0 and their variance σ2, as just said, is 1

3 . So
in our case Zn becomes:

Zn =
Sn
√

3√
n

This Zn function is the one we are going to implement in Faust, and the greater
we choose n, the more close to a normal distribution Zn will be. A very happy
choice of n would be 3, because the Zn expression would be very simple then (only
the sum Sn of the Ui variables); but 3 is a too low number to well approximate the
normal distribution, and its probability density function shape would seem more
like a triangle. A more typical choice is 12, in fact:

Z12 =
Sn
2

is a simple expression too. This will be our case. So, let’s see the Faust code.

//---1

// Gaussian noiser (CL theorem)2

//---3

4

// Uniform multichannel noiser:5

S(1,F) = F ;6

S(i,F) = F <: S(i-1,F), ;7

Divide(n,k) = par(i,n,/(k)) ;8

random = +(12345) : *(1103515245) ;9

RANDMAX = 2147483647.0 ;10

chain(n) = S(n,random) ~ ;11

NoiseN(n) = chain(n) : Divide(n,RANDMAX) ;12

13

// Gaussian noise:14

Normal = NoiseN(12) : float :> : /(2) ;15

process = Normal ;16

I’ve simply copied the Uniform multichannel noiser code in the first part.
Then you can see the Normal variable definition, that first calls our Uniform

Chapter 4 Noisers 84

multichannel noiser with 12 outputs (NoiseN(12), then only the first channel
goes through a float function (I will explain this later), then a :> operator
merges the 12 channels values summing them into one channel, and finally the
result is passed to the /(2) function. This string calculates what we’ve called
Z12. The process definition then simply calls this function.

I have now to explain to you the meaning of that “float” function inside the
Normal definition. Without it, the factorization Faust algorithm would simplify
the calculation unifying the addictions and the multiplications-divisions, trying
to optimize the number of operations to do. But in this case we don’t want
Faust to change the operations inside the random generator (in particular the
chain function), because its well working depends on the execution of exactly
that operations in exactly that order. We can say that since we are using a
modular arithmetic for the random generation (in fact positive numbers wrap into
negative ones), the operations + and * we are using inside it are not the same
we use outside it; for example adding 1 inside the random generator could turn
a positive number into a negative one, while outside it, where numbers are less
big, this behavior is not expected (or at least, is not wanted): so in a certain
way that “+” used into the modular arithmetic is expected to work in a different
way than the usual “+”, so it’s a different operation, and the same goes for the
multiplication. These operations are different as long as the numbers involved are
big enough, i.e. before the normalization trough the division by RANDMAX in the
NoiseN block; so results could change if operations migrate from outside to inside
that block or viceversa, but this is exactly the kind of stuff that happens during
Faust’s optimizing factorization. If we put that “float” function then, Faust
won’t try to factorize things before it with things after it, because at this time it
doesn’t know how to do that, and this solves the problem. Looking at the results,
I’ve noticed it is sufficient to put this function only on the first channel, even if
Faust could factorize still among the other channels, but actually this idea seems
not to reach it. I’m working with the 0.9.94j-par version, but in future versions
of Faust maybe you’ll have to put the “float” function on each channel, by
replacing it in the code with the already seen par construction (used in 4.2):

par(i, 12, float) ;

You can see the .svg block diagram in fig. 4.3 and the resulting output statistics
of both the wrong (without use of float) and the correct version of this object
in fig. 4.4. You’ll recognize the typical bell-shape in the correct version’s output
histogram, and just something wrong in the other one’s.

4.3.2 Box-Muller transform technique

The Box-Muller transform technique makes use of only two uniformly dis-
tributed variables, to build a normally distributed one; on the other hand, it uses
some very expensive functions like square roots or logarithms.

85 4.3 Normally distributed mono noiser

Figure 4.3: The “Central Limit Theorem technique Gaussian noiser” block-
diagram.

Figure 4.4: The “Central Limit Theorem technique Gaussian noiser” output statis-
tics. Are shown here both the wrong object’s results (blue) and the correct object’s
ones (red). There is no doubt that something is wrong in the blue histogram. The
analysis has been made on 10000 samples in the way shown in ??.

Chapter 4 Noisers 86

If U and V are our two independent random variables uniformly distributed
in the interval (0,1], then the two following functions are independent random
variables both with a normal distribution of standard deviation 1:

Z0 =
√
−2 lnU cos(2πV)

Z1 =
√
−2 lnU sin(2πV)

As in the previous case, we’ll use our NoiseN function. Since the range of its
output channels is [-1,1] and we need now a range of (0,1], we’ll have to map that
interval into the new one. The mapping function M(x) has to preserve the uniform
distribution, so it may be linear. The most obvious is this:

M : [−1, 1] 7−→ (0, 1]

M(x) = min(
x+ 1

2
+ ε, 1)

where ε is the smallest normal number in the 32 bits floating point format (that
is the one actually used by Faust). Its value is:

ε = 2−126

Of course, M(x) is not so linear because of the min function; but its presence
changes the linearity of the mapping only if the independent variable value is 1,
and the probability of this event is very low: it is 1

m where m is the number of the
possibile returned values in the interval [-1,1], so because of the random generator
we are using it’s m = 232 (see m in 4.1). Thus the non-linearity introduced by
the min function occurs exactly once every m samples, that is every 27 hours of
noise at a sampling rate of 44100 Hz! We can consider then the M(x) mapping
linear enough. Inside the Faust code then, the min(1) function is not necessary
because the number 1 + ε is already rounded to 1 because of the precision loss of
the floating point format.

Thus, the Faust code will call the NoiseN function with 2 outputs, and assign
them to U and V variables by the mapping function M(x):

U = NoiseN(2) : ,! : +(1) : /(2) : +(epsilon) ;
V = NoiseN(2) : !, : +(1) : /(2) : +(epsilon) ;

To select one of the two NoiseN output channels, I’ve used the object wire,! that
is like the parallel composition of a cable and a pair of scissors (function !). In
the first line, I keep only the first NoiseN output channel, in the second line the
second one, changing the order of the said functions.

For the epsilon constant (ε), I’ll use the pow(a,b) function, which returns
the number ab. I’ll take it a bit greater by multiplying by 1.1, to be sure that it
will not be rounded to a denormal number because of its decimal representation
inside the C++ generated code. So epsilon is:

87 4.3 Normally distributed mono noiser

epsilon = pow(2, -126) * 1.1 ;

Usually, where it’s possible, you should try not to use this function, because it is
computationally very expensive (the most expensive of all!). But in this case the
Faust compiler will recognize that its result is a constant and it will replace it
with the explicit value inside the generated C++ code. If you don’t believe me,
simply check this line inside the for cycle in the generated C++ code:

output0[i] = (sqrtf((0 - (2 * logf(1.17549e-38f + [...]

The small number 1.17549e-38f, that like on the calculators stays for 1.17549 ·
10−38, is our epsilon. The rest of the code is really trivial. Apart from the random
generator strings, that here are suppressed but that you should know quite well
at this point, the whole code is the following one:

//---1

// Gaussian noiser (BM transform)2

//---3

4

import("math.lib") ; //for PI definition5

6

// Uniform multichannel noiser:7

[...]8

9

// Variables assignment:10

epsilon = pow(2, -126) * 1.1 ;11

U = NoiseN(2) : ,! : +(1) : /(2) : +(epsilon) ;12

V = NoiseN(2) : !, : +(1) : /(2) : +(epsilon) ;13

14

Z = -2 * log(U) : sqrt : *(cos(2 * PI * V)) ;15

process = Z ;16

Using table look-up Ok this is the typical case in which some expensive oper-
ations can be replaced by look-up tables. This kind of technique has already been
shown in [GO03] in the Harmonic Oscillator example, for the sin function. The
idea is that we calculate the expensive operations for a certain number of values
in the range we need, store these results in a rdtable at the initialization time,
and then simply consult this table during the running process. The look-up task
has a certain time cost, so its use has to be preferred only for computationally
expensive operations.

Let’s change so the previous code: we have to store the U and V operations
chains inside two separate rdtables. To do so, we have to get these results, com-
puted for the needed interval (0,1], in the form of two signals. So we first need
for each operation chain a counter normalized into the interval we said. This can

Chapter 4 Noisers 88

be made with two different counters, the first incrementing by one at each sample
(I’ve called this time), and the other one (that I’ve called i) dividing its value by
an opportune number. Since we need the range (0,1], the first counter will start
from 1, and the second one will divide it by the table size. In this way, the 0 will
be excluded, and the maximum value will be 1:

time = +(1) ~ ;
i(time,size) = time / size ;

where of course size represents the table size. Now, we have to define the signal
where to store the operations chain result. I’ll call the respective U and V chains
resulting signals Utable and Vtable:

Utable(time,size) = -2 * log(i(time,size)) : sqrt ;
Vtable(time,size) = cos(2 * PI * i) ;

Maybe it’s better if we write these two functions with the “with” synthax:

Utable(size) = -2 * log(i) : sqrt
with {

time = +(1) ~ ; // i = 1,2,...
i = time / size ;
} ;

Vtable(size) = cos(2 * PI * i)
with {

time = +(1) ~ ; // i = 1,2,...
i = time / size ;
} ;

Now we have to build the two rdtables, that have the following syntax:

rdtable(size, values, read-index)

where “size” is the size (in samples of course), “values” the signal whose values
will be stored sample-per-sample into the table (in our case it is Utable(size) or
Vtable(size)), and “read-index” the index that says during the running process
which cell’s value we want to be read. The read-index will be the value of our U
or V variables, normalized into the table size, so multiplied by size, and forced
to be integer. So, the resulting Z variable will have the following expression:

Z(size) = U * size : int : rdtable(size,Utable(size)) :
*(V * size : int : rdtable(size,Vtable(size))) ;

(notice that this is a single-line code because of the “;” presence only in the second
line). The last thing to do is to limit the bounds of U and V variables, because

89 4.3 Normally distributed mono noiser

the compiler has to recognize the read-indexes range: we have to put then the
min(1) and max(0) expressions into their definitions.

We have finished, the whole new code is the following one:

//---1

// Gaussian noiser (BM transform) + rdtables2

//---3

4

import("math.lib") ;5

6

// Uniform multichannel noiser:7

[...]8

9

// Variables assignment:10

epsilon = pow(2, -126) * 1.1 ;11

U = NoiseN(2) : ,! : +(1) : /(2) : +(epsilon) : min(1) : max(0) ;12

V = NoiseN(2) : !, : +(1) : /(2) : +(epsilon) : min(1) : max(0) ;13

14

Utable(size) = -2 * log(i) : sqrt15

with {16

time = +(1) ~ ; // i = 1,2,...17

i = time / size ;18

} ;19

20

Vtable(size) = cos(2 * PI * i)21

with {22

time = +(1) ~ ; // i = 1,2,...23

i = time / size ;24

} ;25

26

Z(size) = U * size : int : rdtable(size,Utable(size)) :27

*(V * size : int : rdtable(size,Vtable(size))) ;28

29

process = Z(1<<16);30

In process, inside Z’s argument, you have to set the size of the two rdtables. The
bigger is that number, the more accurate is the collection of the rdtable data,
but the more memory is required. A value of 1000 is good enough to generate a
distribution quite identical to the original version, without rdtables, one. You
can see in fact the confront between the distributions of the two object’s versions
in fig. 4.5, where rdtable’s size has been set to 1000. However, this number limits
the possibile returned values variety: in fact if you set it to n, then each of the
two U and V variables could read exactly n different values inside the respective
table, so Z(n), being a combination of the two look-ups, will return n2 different

Chapter 4 Noisers 90

values. To have the same variability used for the uniformly distributed noiser,
so 232 values, n should be set to 216. This is why I’ve put Z(1<<16) inside the
process definition, because it’s equivalent to writing Z(216).

Figure 4.5: The statistics of the output of the two seen versions of the Box-Muller
transform noiser. The “original” object’s output statistics are the blue histogram
and the “look-up tables” object’s output statistics are the red one. Their shapes
hare identical enough for musical purposes. The analysis has been made on 10000
samples.

4.3.3 Comparison between the three techniques

We have seen three ways of producing a normally distributed random variable.
Which of the three objects should we choose? We have to evaluate which is the
most correct and which is the lest expensive. About the former evaluation, see
fig. 4.6, in which are shown the first two functions output statistics – the third
one, the look-up tables version for the Box-Muller transform object, has already
been shown in fig. 4.5, and we’ve found its shape identical to the without-look-
up-tables version. I would say that the two functions return the same shape,
apart from normal statistical fluctuations. In fig. 4.7 then you can see these
object’s output bandwidth instead. The Box-Muller transform technique with
look-up tables is quite 2 times faster than the Central Limit Theorem technique
on my computer, and more than 4 times faster than the Box-Muller transform
technique without look-up tables. Different results, however, could occur with a
vectorializing compiler (see ?? for a discussion on different compilers.), because
heavy arithmetical functions like square roots and logarithms have a very better
behavior on that kind of compilers. On my machine and with my Gcc compiler,

91 4.4 Noiser with Bernoulli distribution

however, the choice is not difficult and the “Box-Muller transform technique” with
look-up tables is very preferable.

Figure 4.6: The statistics of the “Central Limit Theorem technique” output (in
blue) and the “Box-Muller transform technique” without look-up tables (in red).
Apart from normal statistical fluctuations, their shapes look identical. The anal-
ysis has been made on 10000 samples.

4.4 Noiser with Bernoulli distribution

A random variable with Bernoulli distribution is very useful for triggering
events, since its output can be only 1 (with probability p) or 0 (with probability
1 − p). It is very easy to simulate it through a uniformly distributed random
variable U : in fact if its interval is [0,1] then we can define a new variable B in
the following way:

B(U, p) =
{

1 if U < p
0 else

So B(U, p) will be 1 if U will be less than p, and since U is uniformly distributed,
this event has exactly the probability p. The opposite case is complementary, so it
has the probability 1−p. Thus, by definition B(U, p) has a Bernoulli distribution.
Inside the Faust code, all we have to do is to map the uniformly distributed noiser
values, whose range is [-1,1], into the interval [0,1]: this can be done for example
taking the absolute values. The code becomes then the following:

//---1

// Bernoulli distributed noise2

//---3

Chapter 4 Noisers 92

Figure 4.7: The output bandwidth respectively of the “Central Limit Theorem
technique”, of the “Box-Muller transform technique” without look-up tables, and
of the “Box-Muller transform technique” with look-up tables Gaussian noisers. As
usual, I’ve used a test value to confront these objects results with the other ones,
in terms of pure computational cost. So I’ve used an object without inputs and
with one output, like the three noisers, but without calculations. On my machine,
this object had a huge output bandwidth of 4.8 Gb/s, because of the lack of any
input reading time cost.

93 4.5 Anti-denormal dithering

4

import("music.lib") ; // for ‘noise’ definition5

p = hslider("Probability parameter",0.5,0,1,0.0001) ;6

Bernoulli(p) = abs(noise) < p ;7

process = Bernoulli(p) ;8

I remind you that the < operator returns 1 if the condition is true, 0 else, while
the function abs returns the absolute value of its argument. So abs(noise) is our
U variable in the correct interval [0,1].

4.5 Anti-denormal dithering

Sometimes could happen that, especially because of recursive filters, some
non-zero values fall in absolute value under the balanced range supported by the
floating-point format. These numbers are called denormal or subnormal, and could
crash the computing. To avoid this, it might be necessary to add in that cases
a dithering noise with absolute values greater than the smallest normal number.
This can be made with the following code:

//---1

// Anti-denormal dithering2

//---3

4

import("music.lib"),;5

epsilon = pow(2, -126) * 1.1 ;6

dith = ((noise > 0) * 2 - 1) * epsilon ;7

process = +(dith) ;8

I’ve imported the music.lib library first, for the Uniform mono noiser definition
(see 4.1). Then I’ve defined the epsilon constant (ε), that represents the smallest
normal number in absolute value for the 32 bit floating point format (already used
in 4.3.2). Then the dith function takes the noise output (range [-1,1]) and first
converts it in a binary output through the >(0) function; so at this point we have
random values in the set {0,1}. Then the successive operations map these outputs
in the set {−ε, ε}. So the dith function outputs randomly a ε or a −ε. The
process then adds these random values to the input signal.

This object should remove denormal numbers and solve crashing problems
related to them. For example, in fig. 4.8 is shown the output bandwidth of a
“denormal noiser” compared with the same object in sequence with the Anti-
denormal dithering.

Chapter 4 Noisers 94

Figure 4.8: The comparison between a denormal numbers generator and the same
object in association with the “anti-denormal dithering”.
Even if the second code requires more operations, it’s more than 3 times cheaper

because of the absence of denormal numbers.

4.6 Computational overview

In fig. 4.9 are shown the output bandwidths of the objects we’ve seen in this
chapter (except the Box-Muller transform without look-up tables and the Central
Limit Theorem Gaussian noisers, because we had discarded them in 4.3.3).

4.7 Conclusion

The noisers seen in this chapter are very useful as random numbers generators,
especially in association with the Sampling&Hold object. You will see an example
of this use in the Granulator (see ??). Before this last object, in next chapter we
will see some filter uses. . .

95 4.7 Conclusion

Figure 4.9: The output bandwidth of the chapters objects. You can see re-
spectively the “Uniformly distributed mono noiser”, the “Uniformly distributed
multichannel noiser” (set with 3 outputs here), the “Gaussian noiser (with the
Box-Muller trasform method with look-up tables)”, the “Noiser with Bernoulli
distribution” and the “Anti-denormal dithering”. I’ve used different test object
following the number of inputs and outputs of each object.

Chapter 4 Noisers 96

Chapter 5

Filters

Introduction

Filtering is a main tool in DSP applications, and plays a central role in physical
modeling and sound manipulation. We have already seen some filters like the
smooth for control signal smoothing in many objects, and highpass and lowpass
filters for analysis tasks in the Universal Pitch Tracker (2.2.4); we’ll see some
other sound manipulation uses first, like the Auto-Wha, where will be also solved
a precision loss problem with some numbers (5.1), or the more indirect use in the
Signal Sideband Modulation (5.2). We’ll see a heterodyning filter example in an
alternative approach to the Adaptive FM Synthesis (5.3) and finally a physical
modeling use in a circular spazialisator (5.4). As usual, a computational overview
(5.5) and a brief conclusion (5.6) will end the chapter.

5.1 Auto-Wha

The “wha” effect is a very popular electric guitar pedal, that performs a spec-
trum emphasis around a running frequency, driven by the pedal’s angle. The
“auto-wha” is a variant of this effect, in which the running emphasizing frequency
is driven by the amplitude of the input signal itself.

The wha in his classic version has been implemented by Julius Smith in his
effect.lib Faust library, in two different functions: wha4, using a 4th order Moog
“Voltage Controlled Filter” (VCF) emulation, and a crybaby, that emulates di-
rectly this popular kind of wha pedals. We are going to use the last one for our
Auto-Wha.

First, let’s see the crybaby syntax. It simply requires the pedal’s angle, nor-
malized into the range [0,1], where 0 sets the minimum filter’s frequency allowed
and 1 the maximum one. So we have to analyze the input signal’s level and map
it into this range. The resultant scheme is shown in fig. 5.1.

97

Chapter 5 Filters 98

Figure 5.1: The “Auto-Wha” scheme

Level detector To analyze the level, we could use the RMS object seen in 3.2.
But in this case an absolute values average, without squares and the expensive
square root, is sufficient. First, we have to define the summing function Sum(n,x),
that is identical to the S(n,x) function used inside the RMS with fixed n object:

Sum(n,x) = +(x - (x @ n)) ~ ;

I remind you that inside this function is stored the sum of the last n samples value.
Now, as I said, we’ll simply use the average of the absolute values – we have to
take the absolute values because else negative ones could make nulled the simple
average for non-zero signals. A logic definition should be the following one:

Average(n,x) = x : abs : Sum(n) : /(n) ;

This should return the following expression:

Averaget(n, x) =
∑n−1

i=0 |xt−i|
n

The problem is that if we defined the Average function as seen, its results would
be too much distorted by the floating point format loss of precision. In fact, the
floating point format has an higher precision around 0 than in greater numbers. So,
when the Average(n,x) value increases enough, its precision becomes minor than
the single samples values one, and it could happen that when the signal goes to
zero, the subtraction of the old signal values brings the Average to negative values.
Then we have to convert the calculations inside the Average function to a non-
floating point format. This can be done by multiplying by a big integer number
and converting the result to the integer format at the beginning of the incriminated
expression, and by converting then to floating point format and dividing for the
same big integer number at the end of it. The following expression defines the
Average function with this kind of conversion inside:

Average(n,x) = x *(1<<22):int : abs:Sum(n) : float:/(1<<22) : /(n);

The choice of the multiplication and division by (1<<22), that is 222, is not casual.
In fact I’m going to set n, the number of analyzed samples, to 1000. Thus, the
maximum Sum(1000) value will be 1000, being [-1,1] the signal normal range.

99 5.1 Auto-Wha

This number requires 10 bits to be stored (considering also the sign), because the
biggest unsigned number you can express with n bits is 2n − 1. Then there are
other 22 bits free, in the 32 bit integer format, and I can multiply by 222 knowing
the result won’t go in overflow. In this way, being the precision the same for all
magnitudes, the problem of the precedent Average version is not more present.

Mapping function Now that the level detector is ready, let’s see the successive
mapping function. The input of this function will be the output of the level
detector, and this can’t exceed the range [0,1]. Also the output of the mapping
function has to be in the same range, because it will drive the normalized wha
pedal angle. So, if the input signal reaches the maximum possible average level
(it has to be a square wave of amplitude 1) the identity function is already a well
working map. Else, in most of cases, the mapping function should “enlarge” the
level detector’s output by multiplying it by some value greater than 1. So our
function should be something like this:

Map(x) = a · x with a ≥ 1

The a parameter will be set by the user accordingly to the input signal level and
wave shape. To be sure the Map output won’t exceed the allowed range, I have
limited to [0,1] it through the max and min functions – who knows, maybe some
roundings could make it negative. . . max and min functions are very cheep and it’s
better not to risk! The resulting code for the mapping function is the following:

Map(x) = x * a : max(0) : min(1) ;

CryBaby Now we have our driving signal, and we have to link it with the
crybaby function. Its syntax, that you can verify in its definition in effect.lib , is:

crybaby(angle, signal)

so as “angle” argument we shall give the Map output, as “signal” the input signal.
We can write this in this way:

process(x) = x : crybaby(x : Average : Map) ;

This is the first time we write an argument inside the process: this will become
the object’s inlet, and in this way we can give a name to its value, for example
x. The crybaby function is called with one argument, that is so the first one
(“angle”), and it’s made by the chain we’ve spoken about. The crybaby with only
this argument becomes a partial function, and we can “plug” into it the other
needed argument, the signal, that will be our object inlet, x.

Chapter 5 Filters 100

Whole code Finally, the whole code is the following.

//---1

// Auto-Wha2

//---3

4

import("effect.lib"); //for crybaby definition5

a = hslider("Mapping",1,1,10,0.1) ;6

7

Sum(n,x) = +(x - (x @ n)) ~ ;8

Average(n,x) = x * (1<<22) : int : abs : Sum(n) : float : /(1<<22)9

: /(n);10

Map(x) = x * a : max(0) : min(1) ;11

process(x) = x : crybaby(x : Average(1000) : Map) ;12

5.2 SSM

The Signal Sideband Modulation (SSM) is a technique that returns only one of
the two sidebands a classical ring modulation produces. Thus, if we keep only the
upper sideband, it performs a spectrum shift, that differs from a classical pitch
shift because here all the partials of a sound are shifted by the same amount.
This turns an harmonic sound into an inharmonic one, because after the shift the
ratios between the partials are no longer the original ones. If we keep only the
lower sideband instead, it inverts the spectrum and shift it by a whatever amount.
The mathematical instrument used is the Hilbert transform , with which negative
frequencies are phase-advanced by 90 degrees and positive ones are phase-delayed
by the same amount. This can be done with the use of some all-pass filters,
which coefficient can be calculated with the Parks-McClellan FIR filter design
technique, but we are not going to discuss here too technical issues. Then we’ll
multiply the filters output signals by a sine and a cosine wave, which frequency
will determine the spectrum shifting amount like in a standard ring modulation.
Finally, we’ll have to subtract or to add the two ring-modulated results in order
to obtain respectively the upper or the lower signal side band. The scheme of the
main steps is shown in fig. 5.2. fig. 5.2.

5.2.1 Filters shaping

Fortunately, a well-working implementation of the filters we need is showed in
the Pure Data tutorial, inside the example called H07.ssb.modulation.pd. We are
going simply to translate in Faust language the filters used in that work. In the
original patch, were used four biquad~ objects, which in Pure Data are set using
the biquadratic filter coefficients of the difference equations in the so called Direct

101 5.2 SSM

Figure 5.2: The “SSM” scheme

Form 2. This form’s difference equations are the following:

yn = b0wn + b1wn−1 + b2wn−2

where
wn = xn + a1wn−1 + a2wn−2

The input signal at sample n is xn, while the output, filtered signal at sample n
is yn. The coefficients b0, b1, b2, a1 and a2 are the ones we’ll copy from the Pure
Data patch. We could use the already existing tf2 Faust function, defined in
filter.lib library, that implements a biquadratic filter. In that case we should know
that its coefficients are used in a different difference equation, in which wn is
defined as follows:

wn = xn − a1wn−1 − a2wn−2 for tf2 function

thus to have the same filter some signs in the coefficients should be changed. We
are going to write instead from the beginning a biquad function with the same
difference equations Pure Data uses. I’ll show you two possible way of writing
it.

Filter code first version A first version code tries to transpose step-by-step
the math different equation. The first line is obvious:

biquad(a1,a2,b0,b1,b2,x) = b0*w + b1*w’ + b2*w’’ ;

Chapter 5 Filters 102

in fact it’s exactly the transposition of y(n) mathematical expression. I’ve simply
used the “’” as one-sample delay line and “’’” as two-samples one. But what
about the w(n) expression? Translating it in Faust seems to be an easy task but
it’s not so. It’s better if we draw the block-diagram first. It should look like the
one in fig. 5.3. In fact, i take the x value, sum it with the w(x) 2-samples delayed

Figure 5.3: The “w(x)” block-diagram

value multiplied by a2, and add finally the w(x) 1-sample delayed value multiplied
by a1. Thus it is exactly the description of the w(x) mathematical expression.
You have only to be careful with the embeddings of the two recursive blocks: you
can choose as you prefer the respective positions (which one has to stay inside
and which one outside), because of the commutative propriety of the + operation;
but it’s essential that one stays inside the other, and not for example in sequence,
because this is the only configuration in which all the informations reach both the
memory levels (i.e. the 1-sample and 2-samples delayed loops). If you put them in
sequence instead, the first one wouldn’t receive the data from the second one. As
the scheme shows, then, a 1-sample delay is introduced at the beginning of each
loop, so the internal loop has already a 1-sample delay, while you have to add a
mem function to the external loop to reach the desired 2-samples delay amount.

Now that we have the correct block-diagram, we have to translate it into a
Faust string. This can be done with the Divide et impera paradigm in three
steps: in the first one (divide) we’ll replace the internal loop description with
a function name (“foo” is a perfect name in this cases!), and try to describe the
remaining external structure. Then we’ll translate the “foo” block with its specific
code; finally (impera) we’ll replace the “foo” block inside the first step’s expression
with the second step’s code.

• First step. Ok, we have only a loop and some unary functions, describing

103 5.2 SSM

this in Faust is not too difficult:

w(x) = x : (+ : foo) ~ (mem : *(a2)) ;

• Second step. The “foo” block has also a very simple expression:

foo = + ~ *(a1) ;

• Third step. Now simply merge the two expression:

w(x) = x : (+ : + ~ *(a1)) ~ (mem : *(a2)) ;

So, the whole biquad function definition is:

biquad(a1,a2,b0,b1,b2) = b0*w + b1*w’ + b2*w’’
with {

w = x : (+ : + ~ *(a1)) ~ (mem : *(a2)) ;
} ;

Filter code second version A very elegant way of doing the same filter is the
following code:

biquad(a1,a2,b0,b1,b2) = + ~ conv1(a1,a2) : conv2(b0,b1,b2)
with {

conv2(k0,k1,k2,x) = k0*x + k1*x’ + k2*x’’ ;
conv1(k0,k1,x) = k0*x + k1*x’ ;

} ;

It could seem a bit hermetic, but it’s exactly equivalent to the first version. Get-
ting it requires a small trick. The trick consists in the assumption that the “w”
block can be written in the form:

w = + ~ F ;

for a certain F function. This structure is represented in fig. 5.4, where is also
labelled each signal flow. The first labels you should put are the input and output
flows ones, x and w (that is w(x) if you want to see it like a function as in the
previous version, but now we don’t need so). Then comes w’ as a consequence,
because that dataflow is a 1-sampled delayed version of the output one. Then
comes F(w’), and we don’t know how is this F now, so its output is for us whatever
a function of its input w’. Finally, the + output is of course x+F(w’). Now we
have just to find that F function, and it’s not so difficult if we compare the two

Chapter 5 Filters 104

Figure 5.4: The “w” structure (filter second version)

different expressions we coherently used to label the same output dataflow. Let
me translate them to a mathematical form:

xn + F (wn−1) = wn

in which, as usual, the pedex indicates the time in samples. Now just replace the
wn expression with the required one, replace the wn−1 variable with kn, and you’ll
obtain the following F (kn) expression:

F (kn) = a1kn + a2kn−1

that in Faust, after taking each parameter as variable, looks like the following
code:

conv1(a1,a2,k) = a1 * k + a2 * k’ ;

I’ve changed the function name in conv1 because of the convolution in time domain
this function represents. Then the w code is the following one:

w(a1,a2) = + ~ conv1(a1,a2) ;

and the conv1 function has to be partial because it has to present an inlet (as said
about the “w” structure assumption shown in fig. 5.4).

So we have just obtained the code for the wn expression. The other equation,
the yn one, can be seen as a function that takes the w signal as input inlet. So it
will be an other convolution, say conv2, with the more obvious code:

conv2(b0,b1,b2,w) = b0*w + b1*w’ + b2*w’’ ;

105 5.2 SSM

and it has to be partial and linked to the previous w code through a sequence
operator, so that the previous dataflow becomes the w variable:

y(a1,a2,b0,b1,b2) = + ~ conv1(a1,a2) : conv2(b0,b1,b2) ;

Brackets are not necessary, because the recursive operator has a bigger priority
than the sequence one. Ok, the work is done, all the strings we needed are been
found; by changing some variable names, and using the “with” syntax, you’ll
obtain the biquad code shown at the beginning of the paragraph.

5.2.2 Interpolating oscillators

The filter is not enough for our object. We’ll also need to multiply the filters
output signals by a sine and a cosine wave. I’ve found the sound result much
better, if the sine and cosine oscillators use an interpolated table looking-up. The
sine oscillator with interpolation has already been used in 3.5, is called osci and
is defined in music.lib . We need also a cosine oscillator, that is of course simply a
phase-shifted version of an osci. So we could obtain that kind of oscillator by using
an adaptive delay line on osci. Or we could more simply build a cosci function,
similar to osci but with a cosine period stored in the memory table instead of a
sine one. To do so, let’s take a look to the original osci definition, inside music.lib:

osci(freq) = s1 + d * (s2 - s1)
with {
i = int(phase(freq)) ;
d = decimal(phase(freq)) ;
s1 = rdtable(tablesize+1, sinwaveform, i) ;
s2 = rdtable(tablesize+1, sinwaveform, i+1) ;} ;

All the functions used here and not defined in the with syntax, are defined as
stand-alone functions in the same file. You can see the table looking-up in s1
and s2 strings, where there are two rdtables initialized with a signal called
sinwaveform. Its definition is stand-alone:

sinwaveform = float(time)*(2*PI)/float(tablesize) : sin;
This string has already been explained in [GO03] in the harmonic oscillator ex-
ample, but I just want to remind you that all its first part is a normalized incre-
menting index that goes into the sin function of the second part. This is how the
sinwaveform function generates a sine-wave-form. If we want a cosine-wave-form
then, we have just to change the string second part; then cosci will be exactly
like osci but its tables will be initialized with this other signal:

cosci(freq) = s1 + d * (s2 - s1)
with {

Chapter 5 Filters 106

coswaveform = time*(2*PI)/tablesize : cos ;
i = int(phase(freq)) ;
d = decimal(phase(freq)) ;
s1 = rdtable(tablesize+1, coswaveform, i) ;
s2 = rdtable(tablesize+1, coswaveform, i+1) ;} ;

5.2.3 Whole code

The rest of the code is self-explaining. Notice only that f1 and f2 are the
functions that realize the Hilbert transform, and each of them is made of two
biquad filters in cascade. In process, finally, I’ve put the two possible sidebands
in parallel, so that the left outlet will output the upper sideband, while the right
outlet the lower one.

//---1

// SSM2

//---3

4

import("math.lib") ; // for PI definition5

import("music.lib") ; // for osci definition6

7

biquad(a1,a2,b0,b1,b2) = + ~ conv2(a1,a2) : conv3(b0,b1,b2)8

with {9

conv3(k0,k1,k2,x) = k0*x + k1*x’ + k2*x’’ ;10

conv2(k0,k1,x) = k0*x + k1*x’ ;11

};12

cosci(freq) = s1 + d * (s2 - s1)13

with {14

cosinwaveform = time*(2*PI)/tablesize : cos ;15

i = int(phase(freq)) ;16

d = decimal(phase(freq)) ;17

s1 = rdtable(tablesize+1,cosinwaveform,i) ;18

s2 = rdtable(tablesize+1,cosinwaveform,i+1) ; } ;19

20

f1 = biquad(-0.02569, 0.260502, -0.260502, 0.02569, 1) :21

biquad(1.8685, -0.870686, 0.870686, -1.8685, 1) ;22

f2 = biquad(1.94632, -0.94657, 0.94657, -1.94632, 1) :23

biquad(0.83774, -0.06338, 0.06338, -0.83774, 1) ;24

25

a = hslider("Freq shift",0,-10000,10000,1);26

process(sig) = f1(sig)*cosci(a) - f2(sig)*osci(a),27

f1(sig)*cosci(a) + f2(sig)*osci(a);28

107 5.3 Adaptive FM Synthesis (heterodyning technique)

5.3 Adaptive FM Synthesis (heterodyning technique)

5.4 Circular spazialisator

5.5 Computational overview

5.6 Conclusion

Chapter 5 Filters 108

Bibliography

[GO03] E. Gaudrain and Y. Orlarey, A Faust Tutorial. Grame, Cen-
tre National de Creation Musicale, Lyon, 2003. Downloadable from
http://faust.grame.fr/pubs.php.

[Gra06] A. Graef, “Q - equational programming language: ‘examples’ (website),”
October 2006. 11/08/2008.

[Knu97] D. E. Knuth, The Art of Computer Programming, vol. 2: Seminumerical
Algorithms. Reading, Massachusetts: Addison-Wesley, 3rd ed., 1997. pp. 17-19.

[Kuh90] W. B. Kuhm, “A real-time pitch recognition algorithm for music appli-
cations,” Computer Music Journal, vol. 14, no. 3, pp. 60–71, 1990.

[Loy06] G. Loy, Musimathics (The Mathematical Foundations of Music), vol. 1.
The MIT Press, Cambridge, Massachusetts, 2006.

[LTL08] V. Lazzarini, J. Timoney, and T. Lysaght, “The generation of natural-
synthetic spectra by means of adaptive frequency modulation,” Computer Music
Journal, vol. 32, no. 2, pp. 9–22, 2008.

[Orl07] Y. Orlarey, Faust Quick Reference. Grame, Centre National de Creation
Musicale, Lyon, 2007. Downloadable from http://faust.grame.fr/pubs.php.

[Roe73] J. Roederer, Introduction to the Physics and Psychophysics of Music. The
English Universities Press, London, 1973.

[Smi07] J. O. Smith, “Physical audio signal processing: ‘lagrange interpolation’
(website),” August 2007. 22/08/2008.

109

Index

’ function, 58
¡ function, 93
¡¡ operator, 53
== operator, 31, 58

abs function, 93
aliasing, 55
amplitude, 7
AND

binary operator, 28
used as modulo, 52

Bernoulli distribution, 91
Box-Muller transform, 84
button, 25

Central Limit Theorem, 81
control rate, 8, 14
convex combination, 26, 55, 73
convolution, 104
cosine

oscillator, 105
waveform, 105

counter, 30, 33, 48, 60, 87
Cpp code, 12, 34, 87
crybaby, 97, 99

dcblockerat function, 39
divide et impera, 102

effect.lib Faust library, 97, 99

factorization, 84
false value, 33
fdelay function, 53
filter

Faust library, 9, 39, 56, 74, 101

biquadratic, 101
Butterworth lowpass, 36, 40
cascade, 106
difference equations, 101

float function, 35, 84
floating point

converting from integer, 34
denormal numbers, 93
loss of precision, 78, 86, 98
smallest normal number, 86
table initialization, 49

Hilbert transform, 100, 106
Huygens principle, 65

index, 30
int function, 33, 52
integer format range, 78
intensity, 7
interpolation, 8, 26, 55

Lagrange -, 56, 64, 73
Lagrange-, 68
Thiran allpass -, 56

ITD, 60

JND
in frequency, 42
in intensity, 17

libraries, 11
lowpass1 function, 40

map, 86, 91, 93
mapping, 99
math.lib Faust library, 31, 64, 74
max, 19, 31, 40, 48, 64, 89, 99
mem function, 60

110

111 Index

min, 19, 48, 60, 89, 99
modulation

frequency -, 69
ring, 100
signal sideband, 100

modulo function, 33, 50, 52
music.lib Faust library, 50, 55, 74, 93,

105

normal distribution, 81
Nyquist frequency, 41

osci, 105
osci function, 73

par construction, 80, 84
partial function, 48
pattern-matching, 67, 79
PI function, 74
pitch shift, 100
pitch tracker, 26
pow function, 58, 86
priority, 7
Pure Data, 100

rdtable function, 87
recursive operator, 26, 40, 58
RMS, 56, 98
rwtable function, 49

S&H, 25, 30, 78
sampling rate, 8, 14, 31
sideband, 100, 106
sine

waveform, 105
smooth, 9, 21
spectrum shift, 100
split, 5
sqrt, 7, 12, 19, 21
SR, 31, 64, 74

table
look-up -, 87
look-up -, 105
read-write -, 49

tau2pole, 9
trigger, 25, 91
true value, 33

uniform distribution, 77

WFS, 65
white noise, 78
with syntax, 32, 74, 88

zero
division by-, 31
of a signal, 27

Zeros theorem, 28

Index 112

