// filter.lib - digital filters of various types useful in audio and beyond declare name "Faust Filter Library"; declare author "Julius O. Smith (jos at ccrma.stanford.edu)"; declare copyright "Julius O. Smith III"; declare version "1.29"; declare license "STK-4.3"; // Synthesis Tool Kit 4.3 (MIT style license) declare reference "https://ccrma.stanford.edu/~jos/filters/"; import("music.lib"); // delay, frac and, from math.lib, SR and PI //---------------------- zero(z) -------------------------- // z = location of zero along real axis in z-plane // Difference equation: y(n) = x(n) - z * x(n-1) // Reference: https://ccrma.stanford.edu/~jos/filters/One_Zero.html zero(z) = _ <: _,mem : _,*(z) : -; //------------------------ pole(p) --------------------------- // p = pole location = feedback coefficient // Could also be called a "leaky integrator". // Difference equation: y(n) = x(n) + p * y(n-1) // Reference: https://ccrma.stanford.edu/~jos/filters/One_Pole.html pole(p) = + ~ *(p); //---------------------- integrator -------------------------- // pole(1) [implemented separately for block-diagram clarity] integrator = + ~ _ ; //----------------------- tau2pole --------------------------- // tau2pole(tau) returns a real pole giving exponential decay with // tau = time-constant in seconds // tau2pole(tau) = exp(-1.0/(tau*SR)); //---------------------- smooth(s) -------------------------- // Exponential smoothing by a unity-dc-gain one-pole lowpass // // USAGE: smooth(tau2pole(tau)), where // tau = desired smoothing time constant in seconds, // or // smooth(s), where s = smoothness between 0 and 1. // s=0 for no smoothing // s=0.999 is "very smooth" // s>1 is unstable, and s=1 yields the zero signal for all inputs. // The exponential time-constant is approximately // 1/(1-s) samples, when s is close to (but less than) 1. // Reference: // https://ccrma.stanford.edu/~jos/mdft/Convolution_Example_2_ADSR.html smooth(s) = *(1.0 - s) : + ~ *(s); //------------------- dcblockerat(fb) ----------------------- // fb = "break frequency" in Hz, i.e., -3 dB gain frequency. // The amplitude response is substantially flat above fb, // and sloped at about +6 dB/octave below fb. // Derived from the analog transfer function // H(s) = s / (s + 2*PI*fb) // by the low-frequency-matching bilinear transform method // (i.e., the standard frequency-scaling constant 2*SR). // Reference: // https://ccrma.stanford.edu/~jos/pasp/Bilinear_Transformation.html dcblockerat(fb) = *(b0) : zero(1) : pole(p) with { wn = PI*fb/SR; b0 = 1.0 / (1 + wn); p = (1 - wn) * b0; }; //---------------------- dcblocker -------------------------- // Default dc blocker has -3dB point near 35 Hz (at 44.1 kHz) // and high-frequency gain near 1.0025 (due to no scaling) // dcblocker = zero(1) : pole(0.995); //------------ notchw(width,freq), notch(freq) -------------- // width = "notch width" in Hz (approximate) // freq = "notch frequency" in Hz // Reference: // https://ccrma.stanford.edu/~jos/pasp/Phasing_2nd_Order_Allpass_Filters.html notchw(width,freq) = tf2(b0,b1,b2,a1,a2) with { fb = 0.5*width; // First design a dcblockerat(width/2) wn = PI*fb/SR; b0db = 1.0 / (1 + wn); p = (1 - wn) * b0db; // This is our pole radius. // Now place unit-circle zeros at desired angles: tn = 2*PI*freq/SR; a2 = p * p; a2p1 = 1+a2; a1 = -a2p1*cos(tn); b1 = a1; b0 = 0.5*a2p1; b2 = b0; }; //========================= Comb Filters =============================== //----------------------- ff_comb, ff_fcomb ---------------------------- // Feed-Forward Comb Filter // // USAGE: // _ : ff_comb(maxdel,intdel,b0,bM) : _ // _ : ff_fcomb(maxdel,del,b0,bM) : _ // where // maxdel = maximum delay (a power of 2) // intdel = current (integer) comb-filter delay between 0 and maxdel // del = current (float) comb-filter delay between 0 and maxdel // b0 = gain applied to delay-line input // bM = gain applied to delay-line output and then summed with input // // Note that ff_comb requires integer delays (uses delay() internally) // while ff_fcomb takes floating-point delays (uses fdelay() internally). // // REFERENCE: // https://ccrma.stanford.edu/~jos/pasp/Feedforward_Comb_Filters.html ff_comb (maxdel,M,b0,bM) = _ <: *(b0), bM * delay(maxdel,M) : + ; ff_fcomb(maxdel,M,b0,bM) = _ <: *(b0), bM * fdelay(maxdel,M) : + ; // Typical special case: ffcombfilter(maxdel,del,g) = ff_comb(maxdel,del,1,g); //----------------------- fb_comb, fb_fcomb, rev1 ----------------------- // Feed-Back Comb Filter // // USAGE: // _ : fb_comb(maxdel,intdel,b0,aN) : _ // _ : fb_fcomb(maxdel,del,b0,aN) : _ // _ : rev1(maxdel,del,-aN) : _ // where // maxdel = maximum delay (a power of 2) // intdel = current (integer) comb-filter delay between 0 and maxdel // del = current (float) comb-filter delay between 0 and maxdel // b0 = gain applied to delay-line input and forwarded to output // aN = minus the gain applied to delay-line output before // summing with the input and feeding to the delay line // // Reference: // https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_Filters.html fb_comb (maxdel,N,b0,aN) = (+ <: delay(maxdel,N),_) ~ *(-aN) : !,*(b0); fb_fcomb(maxdel,N,b0,aN) = (+ <: fdelay(maxdel,N),_) ~ *(-aN) : !,*(b0); // The "rev1 section" dates back to the 1960s in computer-music reverberation. // See the jcrev and brassrev in effect.lib for usage examples. rev1(maxdel,N,g) = fb_comb (maxdel,N,1,-g); // Typical special case: fbcombfilter(maxdel,intdel,g) = (+ : delay(maxdel,intdel)) ~ *(g); ffbcombfilter(maxdel,del,g) = (+ : fdelay(maxdel,del)) ~ *(g); //------------------- allpass_comb, allpass_fcomb, rev2 ----------------- // Schroeder Allpass Comb Filter // // USAGE: // _ : allpass_comb (maxdel,intdel,aN) : _ // _ : allpass_fcomb(maxdel,del,aN) : _ // _ : rev2(maxdel,del,-aN) : _ // where // maxdel = maximum delay (a power of 2) // intdel = current (integer) comb-filter delay between 0 and maxdel // del = current (float) comb-filter delay between 0 and maxdel // aN = minus the feedback gain // // Note that allpass_comb(maxlen,len,aN) = // ff_comb(maxlen,len,aN,1) : // fb_comb(maxlen,len-1,1,aN); // which is a direct-form-1 implementation, requiring two delay lines. // The implementation here is direct-form-2 requiring only one delay line. // // REFERENCES: // https://ccrma.stanford.edu/~jos/pasp/Allpass_Two_Combs.html // https://ccrma.stanford.edu/~jos/pasp/Schroeder_Allpass_Sections.html // https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html allpass_comb(maxdel,N,aN) = (+ <: delay(maxdel,N-1),*(aN)) ~ *(-aN) : mem,_ : + ; // The "rev2 section" dates back to the 1960s in computer-music reverberation: rev2(maxlen,len,g) = allpass_comb(maxlen,len,-g); //================ Direct-Form Digital Filter Sections ================ // Specified by transfer-function polynomials B(z)/A(z) as in matlab //---------------------------- iir (tfN) ------------------------------- // Nth-order Infinite-Impulse-Response (IIR) digital filter, // implemented in terms of the Transfer-Function (TF) coefficients. // Such filter structures are termed "direct form". // // USAGE: // _ : iir(bcoeffs,acoeffs) : _ // where // order = filter order (int) = max(#poles,#zeros) // bcoeffs = (b0,b1,...,b_order) = TF numerator coefficients // acoeffs = (a1,...,a_order) = TF denominator coeffs (a0=1) // // REFERENCE: // https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html iir(bv,av) = sub ~ fir(av) : fir(bv); //----------------------------- sub --------------------------------- sub(x,y) = y-x; // move to math.lib? //----------------------------- fir --------------------------------- // FIR filter (convolution of FIR filter coefficients with a signal) // // USAGE: // _ : fir(bv) : _ // where bv = b0,b1,...,bn is a parallel bank of coefficient signals. // NOTE: bv is processed using pattern-matching at compile time, // so it must have this normal form (parallel signals). // EXAMPLE: Smoothing white noise with a five-point moving average: // bv = .2,.2,.2,.2,.2; // process = noise : fir(bv); // EQUIVALENT (note double parens): // process = noise : fir((.2,.2,.2,.2,.2)); fir(bv) = conv(bv); //--------------------------- conv, convN ------------------------------- // Convolution of input signal with given coefficients // // USAGE: // _ : conv((k1,k2,k3,...,kN)) : _; // Argument = one signal bank // _ : convN(N,(k1,k2,k3,...)) : _; // Useful when N < count((k1,...)) convN(N,kv,x) = sum(i,N,take(i+1,kv) * x@i); // take() defined in math.lib conv(kv,x) = sum(i,count(kv),take(i+1,kv) * x@i); // count() from math.lib // Named special cases: //----------------------------- tf1, tf2 --------------------------------- // tfN = N'th-order direct-form digital filter tf1(b0,b1,a1) = _ <: *(b0), (mem : *(b1)) :> + ~ *(0-a1); tf2(b0,b1,b2,a1,a2) = iir((b0,b1,b2),(a1,a2)); // cf. TF2 in music.lib) //===================== Ladder/Lattice Digital Filters ====================== // Ladder and lattice digital filters generally have superior numerical // properties relative to direct-form digital filters. They can be derived // from digital waveguide filters, which gives them a physical interpretation. // REFERENCES: // F. Itakura and S. Saito: "Digital Filtering Techniques for Speech Analysis and Synthesis", // 7th Int. Cong. Acoustics, Budapest, 25 C 1, 1971. // J. D. Markel and A. H. Gray: Linear Prediction of Speech, New York: Springer Verlag, 1976. // https://ccrma.stanford.edu/~jos/pasp/Conventional_Ladder_Filters.html //------------------------------ block, crossn,crossn1 ---------------------------------- // signal block/crossing utilities // (move to math.lib?) // block - terminate n signals (goes with bus(n) in math.lib) block(n) = par(i,n,!); // crossnn - cross two bus(n)s: crossnn(n) = bus(n),bus(n) <: block(n),bus(n),bus(n),block(n); // crossn1 - cross bus(n) and bus(1): crossn1(n) = bus(n),(bus(1)<:bus(n)) <: block(n),bus(n),bus(n),block(n):bus(1),block(n-1),bus(n); //------------------------------- av2sv ----------------------------------- // Compute reflection coefficients sv from transfer-function denominator av // // USAGE: // sv = av2sv(av) // where // av = parallel signal bank a1,...,aN // sv = parallel signal bank s1,...,sN // where si = ith reflection coefficient, and // ai = coefficient of z^(-i) in the filter // transfer-function denominator A(z). // // REFERENCE: // https://ccrma.stanford.edu/~jos/filters/Step_Down_Procedure.html // (where reflection coefficients are denoted by k rather than s). av2sv(av) = par(i,M,s(i+1)) with { M = count(av); s(m) = sr(M-m+1); // m=1..M sr(m) = Ari(m,M-m+1); // s_{M-1-m} Ari(m,i) = take(i+1,Ar(m-1)); //step-down recursion for lattice/ladder digital filters: Ar(0) = (1,av); // Ar(m) is order M-m (i.e. "reverse-indexed") Ar(m) = 1,par(i,M-m, (Ari(m,i+1) - sr(m)*Ari(m,M-m-i))/(1-sr(m)*sr(m))); }; //---------------------------- bvav2nuv -------------------------------- // Compute lattice tap coefficients from transfer-function coefficients // // USAGE: // nuv = bvav2nuv(bv,av) // where // av = parallel signal bank a1,...,aN // bv = parallel signal bank b0,b1,...,aN // nuv = parallel signal bank nu1,...,nuN // where nui is the i'th tap coefficient, // bi is the coefficient of z^(-i) in the filter numerator, // ai is the coefficient of z^(-i) in the filter denominator bvav2nuv(bv,av) = par(m,M+1,nu(m)) with { M = count(av); nu(m) = take(m+1,Pr(M-m)); // m=0..M // lattice/ladder tap parameters: Pr(0) = bv; // Pr(m) is order M-m, 'r' means "reversed" Pr(m) = par(i,M-m+1, (Pri(m,i) - nu(M-m+1)*Ari(m,M-m-i+1))); Pri(m,i) = take(i+1,Pr(m-1)); Ari(m,i) = take(i+1,Ar(m-1)); //step-down recursion for lattice/ladder digital filters: Ar(0) = (1,av); // Ar(m) is order M-m (recursion index must start at constant) Ar(m) = 1,par(i,M-m, (Ari(m,i+1) - sr(m)*Ari(m,M-m-i))/(1-sr(m)*sr(m))); sr(m) = Ari(m,M-m+1); // s_{M-1-m} }; //--------------------------- iir_lat2, allpassnt ----------------------- iir_lat2(bv,av) = allpassnt(M,sv) : sum(i,M+1,*(take(M-i+1,tg))) with { M = count(av); sv = av2sv(av); // sv = vector of sin(theta) reflection coefficients tg = bvav2nuv(bv,av); // tg = vector of tap gains }; // two-multiply lattice allpass (nested order-1 direct-form-ii allpasses): allpassnt(0,sv) = _; allpassnt(n,sv) = //0: x <: ((+ <: (allpassnt(n-1,sv)),*(s))~(*(-s))) : _',_ :+ _ : ((+ <: (allpassnt(n-1,sv),*(s)))~*(-s)) : fsec(n) with { fsec(1) = crossnn(1) : _, (_<:mem,_) : +,_; fsec(n) = crossn1(n) : _, (_<:mem,_),par(i,n-1,_) : +, par(i,n,_); innertaps(n) = par(i,n,_); s = take(n,sv); // reflection coefficient s = sin(theta) }; //------------------------------- iir_kl, allpassnklt ------------------------- iir_kl(bv,av) = allpassnklt(M,sv) : sum(i,M+1,*(tghr(i))) with { M = count(av); sv = av2sv(av); // sv = vector of sin(theta) reflection coefficients tg = bvav2nuv(bv,av); // tg = vector of tap gains for 2mul case tgr(i) = take(M+1-i,tg); tghr(n) = tgr(n)/pi(n); pi(0) = 1; pi(n) = pi(n-1)*(1+take(M-n+1,sv)); // all sign parameters '+' }; // Kelly-Lochbaum ladder allpass with tap lines: allpassnklt(0,sv) = _; allpassnklt(n,sv) = _ <: *(s),(*(1+s) : (+ : allpassnklt(n-1,sv))~(*(-s))) : fsec(n) with { fsec(1) = _, (_<:mem*(1-s),_) : sumandtaps(n); fsec(n) = _, (_<:mem*(1-s),_), par(i,n-1,_) : sumandtaps(n); s = take(n,sv); sumandtaps(n) = +,par(i,n,_); }; //------------------------------- iir_lat1, allpassn1mt ------------------------- iir_lat1(bv,av) = allpassn1mt(M,sv) : sum(i,M+1,*(tghr(i+1))) with { M = count(av); sv = av2sv(av); // sv = vector of sin(theta) reflection coefficients tg = bvav2nuv(bv,av); // tg = vector of tap gains tgr(i) = take(M+2-i,tg); // i=1..M+1 (for "takability") tghr(n)=tgr(n)/pi(n); pi(1) = 1; pi(n) = pi(n-1)*(1+take(M-n+2,sv)); // all sign parameters '+' }; // one-multiply lattice allpass with tap lines: allpassn1mt(0,sv) = _; allpassn1mt(n,sv)= _ <: _,_ : ((+:*(s) <: _,_),_ : _,+ : crossnn(1) : allpassn1mt(n-1,sv),_)~(*(-1)) : fsec(n) with { //0: fsec(n) = _',_ : + fsec(1) = crossnn(1) : _, (_<:mem,_) : +,_; fsec(n) = crossn1(n) : _, (_<:mem,_),par(i,n-1,_) : +, par(i,n,_); innertaps(n) = par(i,n,_); s = take(n,sv); // reflection coefficient s = sin(theta) }; //------------------------------- iir_nl, allpassnnlt ------------------------- // Normalized ladder filter // // REFERENCES: // J. D. Markel and A. H. Gray, Linear Prediction of Speech, New York: Springer Verlag, 1976. // https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html iir_nl(bv,av) = allpassnnlt(M,sv) : sum(i,M+1,*(tghr(i))) with { M = count(av); sv = av2sv(av); // sv = vector of sin(theta) reflection coefficients tg = bvav2nuv(bv,av); // tg = vector of tap gains for 2mul case tgr(i) = take(M+1-i,tg); tghr(n) = tgr(n)/pi(n); pi(0) = 1; s(n) = take(M-n+1,sv); c(n) = sqrt(max(0,1-s(n)*s(n))); // compiler crashes on sqrt(-) pi(n) = pi(n-1)*c(n); }; // Normalized ladder allpass with tap lines: allpassnnlt(0,sv) = _; allpassnnlt(n,scl*(sv)) = allpassnnlt(n,par(i,count(sv),scl*(sv(i)))); allpassnnlt(n,sv) = _ <: *(s),(*(c) : (+ : allpassnnlt(n-1,sv))~(*(-s))) : fsec(n) with { fsec(1) = _, (_<:mem*(c),_) : sumandtaps(n); fsec(n) = _, (_<:mem*(c),_), par(i,n-1,_) : sumandtaps(n); s = take(n,sv); c = sqrt(max(0,1-s*s)); sumandtaps(n) = +,par(i,n,_); }; //========================= Useful special cases ============================ //-------------------------------- tf2np ------------------------------------ // tf2np - biquad based on a stable second-order Normalized Ladder Filter // (more robust to modulation than tf2 and protected against instability) tf2np(b0,b1,b2,a1,a2) = allpassnnlt(M,sv) : sum(i,M+1,*(tghr(i))) with { smax = 0.9999; // maximum reflection-coefficient magnitude allowed s2 = max(-smax, min(smax,a2)); // Project both reflection-coefficients s1 = max(-smax, min(smax,a1/(1+a2))); // into the defined stability-region. sv = (s1,s2); // vector of sin(theta) reflection coefficients M = 2; nu(2) = b2; nu(1) = b1 - b2*a1; nu(0) = (b0-b2*a2) - nu(1)*s1; tg = (nu(0),nu(1),nu(2)); tgr(i) = take(M+1-i,tg); // vector of tap gains for 2mul case tghr(n) = tgr(n)/pi(n); // apply pi parameters for NLF case pi(0) = 1; s(n) = take(M-n+1,sv); c(n) = sqrt(1-s(n)*s(n)); pi(n) = pi(n-1)*c(n); }; //----------------------------- wgr --------------------------------- // Second-order transformer-normalized digital waveguide resonator // USAGE: // _ : wgr(f,r) : _ // where // f = resonance frequency (Hz) // r = loss factor for exponential decay // (set to 1 to make a numerically stable oscillator) // // REFERENCES: // https://ccrma.stanford.edu/~jos/pasp/Power_Normalized_Waveguide_Filters.html // https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html // wgr(f,r,x) = (*(G),_<:_,((+:*(C))<:_,_),_:+,_,_:+(x),-) ~ cross : _,*(0-gi) with { C = cos(2*PI*f/SR); gi = sqrt(max(0,(1+C)/(1-C))); // compensate amplitude (only needed when G = r*(1-1' + gi')/gi; // frequency changes substantially) cross = _,_ <: !,_,_,!; }; //----------------------------- nlf2 -------------------------------- // Second order normalized digital waveguide resonator // USAGE: // _ : nlf2(f,r) : _ // where // f = resonance frequency (Hz) // r = loss factor for exponential decay // (set to 1 to make a sinusoidal oscillator) // // REFERENCE: // https://ccrma.stanford.edu/~jos/pasp/Power_Normalized_Waveguide_Filters.html // nlf2(f,r,x) = ((_<:_,_),(_<:_,_) : (*(s),*(c),*(c),*(0-s)) :> (*(r),+(x))) ~ cross with { th = 2*PI*f/SR; c = cos(th); s = sin(th); cross = _,_ <: !,_,_,!; }; //===================== Ladder/Lattice Allpass Filters ====================== // An allpass filter has gain 1 at every frequency, but variable phase. // Ladder/lattice allpass filters are specified by reflection coefficients. // They are defined here as nested allpass filters, hence the names allpassn*. // // REFERENCES // 1. https://ccrma.stanford.edu/~jos/pasp/Conventional_Ladder_Filters.html // https://ccrma.stanford.edu/~jos/pasp/Nested_Allpass_Filters.html // 2. Linear Prediction of Speech, Markel and Gray, Springer Verlag, 1976 // // QUICK GUIDE // allpassn - two-multiply lattice - each section is two multiply-adds // allpassnn - normalized form - four multiplies and two adds per section, // but coefficients can be time varying and nonlinear without // "parametric amplification" (modulation of signal energy). // allpassnkl - Kelly-Lochbaum form - four multiplies and two adds per // section, but all signals have an immediate physical // interpretation as traveling pressure waves, etc. // allpassn1m - One-multiply form - one multiply and three adds per section. // Normally the most efficient in special-purpose hardware. // // TYPICAL USAGE // _ : allpassn(N,sv) : _ // where // N = allpass order (number of ladder or lattice sections) // sv = (s1,s2,...,sN) = reflection coefficients (between -1 and 1). // For allpassnn only, sv is replaced by tv, where sv(i) = sin(tv(i)), // where tv(i) may range between -PI and PI. // // two-multiply: allpassn(0,sv) = _; allpassn(n,sv) = _ <: ((+ <: (allpassn(n-1,sv)),*(s))~(*(-s))) : _',_ :+ with { s = take(n,sv); }; // power-normalized (reflection coefficients s = sin(t)): allpassnn(0,tv) = _; allpassnn(n,tv) = _ <: *(s), (*(c) : (+ : allpassnn(n-1,tv))~(*(-s))) : _, mem*c : + with { c=cos(take(n,tv)); s=sin(take(n,tv)); }; // power-normalized with sparse delays dv(n)>1: allpassnns(0,tv,dmax,dv) = _; allpassnns(n,tv,dmax,dv) = _ <: *(s), (*(c) : (+ : dl : allpassnns(n-1,tv,dmax,dv))~(*(-s))) : _, mem*c : + with { c=cos(take(n,tv)); s=sin(take(n,tv)); dl=delay(dmax,(take(n,dv)-1)); }; // Kelly-Lochbaum: allpassnkl(0,sv) = _; allpassnkl(n,sv) = _ <: *(s),(*(1+s) : (+ : allpassnkl(n-1,sv))~(*(-s))) : _, mem*(1-s) : + with { s = take(n,sv); }; // one-multiply: allpassn1m(0,sv) = _; allpassn1m(n,sv)= _ <: _,_ : ((+:*(s) <: _,_),_ : _,+ : cross : allpassn1m(n-1,sv),_)~(*(-1)) : _',_ : + with {s = take(n,sv); cross = _,_ <: !,_,_,!; }; //===== Digital Filter Sections Specified as Analog Filter Sections ===== // //------------------------- tf2s, tf2snp -------------------------------- // Second-order direct-form digital filter, // specified by ANALOG transfer-function polynomials B(s)/A(s), // and a frequency-scaling parameter. Digitization via the // bilinear transform is built in. // // USAGE: tf2s(b2,b1,b0,a1,a0,w1), where // // b2 s^2 + b1 s + b0 // H(s) = -------------------- // s^2 + a1 s + a0 // // and w1 is the desired digital frequency (in radians/second) // corresponding to analog frequency 1 rad/sec (i.e., s = j). // // EXAMPLE: A second-order ANALOG Butterworth lowpass filter, // normalized to have cutoff frequency at 1 rad/sec, // has transfer function // // 1 // H(s) = ----------------- // s^2 + a1 s + 1 // // where a1 = sqrt(2). Therefore, a DIGITAL Butterworth lowpass // cutting off at SR/4 is specified as tf2s(0,0,1,sqrt(2),1,PI*SR/2); // // METHOD: Bilinear transform scaled for exact mapping of w1. // REFERENCE: // https://ccrma.stanford.edu/~jos/pasp/Bilinear_Transformation.html // tf2s(b2,b1,b0,a1,a0,w1) = tf2(b0d,b1d,b2d,a1d,a2d) with { c = 1/tan(w1*0.5/SR); // bilinear-transform scale-factor csq = c*c; d = a0 + a1 * c + csq; b0d = (b0 + b1 * c + b2 * csq)/d; b1d = 2 * (b0 - b2 * csq)/d; b2d = (b0 - b1 * c + b2 * csq)/d; a1d = 2 * (a0 - csq)/d; a2d = (a0 - a1*c + csq)/d; }; // tf2snp = tf2s but using a protected normalized ladder filter for tf2: tf2snp(b2,b1,b0,a1,a0,w1) = tf2np(b0d,b1d,b2d,a1d,a2d) with { c = 1/tan(w1*0.5/SR); // bilinear-transform scale-factor csq = c*c; d = a0 + a1 * c + csq; b0d = (b0 + b1 * c + b2 * csq)/d; b1d = 2 * (b0 - b2 * csq)/d; b2d = (b0 - b1 * c + b2 * csq)/d; a1d = 2 * (a0 - csq)/d; a2d = (a0 - a1*c + csq)/d; }; //----------------------------- tf1s -------------------------------- // First-order direct-form digital filter, // specified by ANALOG transfer-function polynomials B(s)/A(s), // and a frequency-scaling parameter. // // USAGE: tf1s(b1,b0,a0,w1), where // // b1 s + b0 // H(s) = ---------- // s + a0 // // and w1 is the desired digital frequency (in radians/second) // corresponding to analog frequency 1 rad/sec (i.e., s = j). // // EXAMPLE: A first-order ANALOG Butterworth lowpass filter, // normalized to have cutoff frequency at 1 rad/sec, // has transfer function // // 1 // H(s) = ------- // s + 1 // // so b0 = a0 = 1 and b1 = 0. Therefore, a DIGITAL first-order // Butterworth lowpass with gain -3dB at SR/4 is specified as // // tf1s(0,1,1,PI*SR/2); // digital half-band order 1 Butterworth // // METHOD: Bilinear transform scaled for exact mapping of w1. // REFERENCE: // https://ccrma.stanford.edu/~jos/pasp/Bilinear_Transformation.html // tf1s(b1,b0,a0,w1) = tf1(b0d,b1d,a1d) with { c = 1/tan((w1)*0.5/SR); // bilinear-transform scale-factor d = a0 + c; b1d = (b0 - b1*c) / d; b0d = (b0 + b1*c) / d; a1d = (a0 - c) / d; }; //----------------------------- tf2sb -------------------------------- // Bandpass mapping of tf2s: In addition to a frequency-scaling parameter // w1 (set to HALF the desired passband width in rad/sec), // there is a desired center-frequency parameter wc (also in rad/s). // Thus, tf2sb implements a fourth-order digital bandpass filter section // specified by the coefficients of a second-order analog lowpass prototpe // section. Such sections can be combined in series for higher orders. // The order of mappings is (1) frequency scaling (to set lowpass cutoff w1), // (2) bandpass mapping to wc, then (3) the bilinear transform, with the // usual scale parameter 2*SR. Algebra carried out in maxima and pasted here. // tf2sb(b2,b1,b0,a1,a0,w1,wc) = iir((b0d/a0d,b1d/a0d,b2d/a0d,b3d/a0d,b4d/a0d),(a1d/a0d,a2d/a0d,a3d/a0d,a4d/a0d)) with { T = 1.0/float(SR); b0d = (4*b0*w1^2+8*b2*wc^2)*T^2+8*b1*w1*T+16*b2; b1d = 4*b2*wc^4*T^4+4*b1*wc^2*w1*T^3-16*b1*w1*T-64*b2; b2d = 6*b2*wc^4*T^4+(-8*b0*w1^2-16*b2*wc^2)*T^2+96*b2; b3d = 4*b2*wc^4*T^4-4*b1*wc^2*w1*T^3+16*b1*w1*T-64*b2; b4d = (b2*wc^4*T^4-2*b1*wc^2*w1*T^3+(4*b0*w1^2+8*b2*wc^2)*T^2-8*b1*w1*T +16*b2) + b2*wc^4*T^4+2*b1*wc^2*w1*T^3; a0d = wc^4*T^4+2*a1*wc^2*w1*T^3+(4*a0*w1^2+8*wc^2)*T^2+8*a1*w1*T+16; a1d = 4*wc^4*T^4+4*a1*wc^2*w1*T^3-16*a1*w1*T-64; a2d = 6*wc^4*T^4+(-8*a0*w1^2-16*wc^2)*T^2+96; a3d = 4*wc^4*T^4-4*a1*wc^2*w1*T^3+16*a1*w1*T-64; a4d = wc^4*T^4-2*a1*wc^2*w1*T^3+(4*a0*w1^2+8*wc^2)*T^2-8*a1*w1*T+16; }; //----------------------------- tf1sb -------------------------------- // First-to-second-order lowpass-to-bandpass section mapping, // analogous to tf2sb above. // tf1sb(b1,b0,a0,w1,wc) = tf2(b0d/a0d,b1d/a0d,b2d/a0d,a1d/a0d,a2d/a0d) with { T = 1.0/float(SR); a0d = wc^2*T^2+2*a0*w1*T+4; b0d = b1*wc^2*T^2 +2*b0*w1*T+4*b1; b1d = 2*b1*wc^2*T^2-8*b1; b2d = b1*wc^2*T^2-2*b0*w1*T+4*b1; a1d = 2*wc^2*T^2-8; a2d = wc^2*T^2-2*a0*w1*T+4; }; //====================== Simple Resonator Filters ====================== // resonlp = 2nd-order lowpass with corner resonance: resonlp(fc,Q,gain) = tf2s(b2,b1,b0,a1,a0,wc) with { wc = 2*PI*fc; a1 = 2/Q; a0 = 1; b2 = 0; b1 = 0; b0 = gain; }; // resonhp = 2nd-order highpass with corner resonance: resonhp(fc,Q,gain,x) = gain*x-resonlp(fc,Q,gain,x); // resonbp = 2nd-order bandpass resonbp(fc,Q,gain) = tf2s(b2,b1,b0,a1,a0,wc) with { wc = 2*PI*fc; a1 = 2/Q; a0 = 1; b2 = 0; b1 = gain; b0 = 0; }; //================ Butterworth Lowpass/Highpass Filters ====================== // Nth-order Butterworth lowpass or highpass filters // // USAGE: // _ : lowpass(N,fc) : _ // _ : highpass(N,fc) : _ // where // N = filter order (number of poles) [nonnegative integer] // fc = desired cut-off frequency (-3dB frequency) in Hz // REFERENCE: // https://ccrma.stanford.edu/~jos/filters/Butterworth_Lowpass_Design.html // 'butter' function in Octave ("[z,p,g] = butter(N,1,'s');") // ACKNOWLEDGMENT // Generalized recursive formulation initiated by Yann Orlarey. lowpass(N,fc) = lowpass0_highpass1(0,N,fc); highpass(N,fc) = lowpass0_highpass1(1,N,fc); lowpass0_highpass1(s,N,fc) = lphpr(s,N,N,fc) with { lphpr(s,0,N,fc) = _; lphpr(s,1,N,fc) = tf1s(s,1-s,1,2*PI*fc); lphpr(s,O,N,fc) = lphpr(s,(O-2),N,fc) : tf2s(s,0,1-s,a1s,1,w1) with { parity = N % 2; S = (O-parity)/2; // current section number a1s = -2*cos(-PI + (1-parity)*PI/(2*N) + (S-1+parity)*PI/N); w1 = 2*PI*fc; }; }; //========== Special Filter-Bank Delay-Equalizing Allpass Filters =========== // // These special allpass filters are needed by filterbank et al. below. // They are equivalent to (lowpass(N,fc) +|- highpass(N,fc))/2, but with // canceling pole-zero pairs removed (which occurs for odd N). //-------------------- lowpass_plus|minus_highpass ------------------ highpass_plus_lowpass(1,fc) = _; highpass_plus_lowpass(3,fc) = tf2s(1,-1,1,1,1,w1) with { w1 = 2*PI*fc; }; highpass_minus_lowpass(3,fc) = tf1s(-1,1,1,w1) with { w1 = 2*PI*fc; }; highpass_plus_lowpass(5,fc) = tf2s(1,-a11,1,a11,1,w1) with { a11 = 1.618033988749895; w1 = 2*PI*fc; }; highpass_minus_lowpass(5,fc) = tf1s(1,-1,1,w1) : tf2s(1,-a12,1,a12,1,w1) with { a12 = 0.618033988749895; w1 = 2*PI*fc; }; // Catch-all definitions for generality - even order is done: highpass_plus_lowpass(N,fc) = switch_odd_even(N%2,N,fc) with { switch_odd_even(0,N,fc) = highpass_plus_lowpass_even(N,fc); switch_odd_even(1,N,fc) = highpass_plus_lowpass_odd(N,fc); }; highpass_minus_lowpass(N,fc) = switch_odd_even(N%2,N,fc) with { switch_odd_even(0,N,fc) = highpass_minus_lowpass_even(N,fc); switch_odd_even(1,N,fc) = highpass_minus_lowpass_odd(N,fc); }; highpass_plus_lowpass_even(N,fc) = highpass(N,fc) + lowpass(N,fc); highpass_minus_lowpass_even(N,fc) = highpass(N,fc) - lowpass(N,fc); // FIXME: Rewrite the following, as for orders 3 and 5 above, // to eliminate pole-zero cancellations: highpass_plus_lowpass_odd(N,fc) = highpass(N,fc) + lowpass(N,fc); highpass_minus_lowpass_odd(N,fc) = highpass(N,fc) - lowpass(N,fc); //===================== Elliptic (Cauer) Lowpass Filters =================== // USAGE: // _ : lowpass3e(fc) : _ // _ : lowpass6e(fc) : _ // where fc = -3dB frequency in Hz // // REFERENCES: // http://en.wikipedia.org/wiki/Elliptic_filter // functions 'ncauer' and 'ellip' in Octave //----------------------------- lowpass3e ----------------------------- // Third-order Elliptic (Cauer) lowpass filter // DESIGN: For spectral band-slice level display (see octave_analyzer3e): // [z,p,g] = ncauer(Rp,Rs,3); % analog zeros, poles, and gain, where // Rp = 60 % dB ripple in stopband // Rs = 0.2 % dB ripple in passband // lowpass3e(fc) = tf2s(b21,b11,b01,a11,a01,w1) : tf1s(0,1,a02,w1) with { a11 = 0.802636764161030; // format long; poly(p(1:2)) % in octave a01 = 1.412270893774204; a02 = 0.822445908998816; // poly(p(3)) % in octave b21 = 0.019809144837789; // poly(z) b11 = 0; b01 = 1.161516418982696; w1 = 2*PI*fc; }; //----------------------------- lowpass6e ----------------------------- // Sixth-order Elliptic/Cauer lowpass filter // DESIGN: For spectral band-slice level display (see octave_analyzer6e): // [z,p,g] = ncauer(Rp,Rs,6); % analog zeros, poles, and gain, where // Rp = 80 % dB ripple in stopband // Rs = 0.2 % dB ripple in passband // lowpass6e(fc) = tf2s(b21,b11,b01,a11,a01,w1) : tf2s(b22,b12,b02,a12,a02,w1) : tf2s(b23,b13,b03,a13,a03,w1) with { b21 = 0.000099999997055; a21 = 1; b11 = 0; a11 = 0.782413046821645; b01 = 0.000433227200555; a01 = 0.245291508706160; b22 = 1; a22 = 1; b12 = 0; a12 = 0.512478641889141; b02 = 7.621731298870603; a02 = 0.689621364484675; b23 = 1; a23 = 1; b13 = 0; a13 = 0.168404871113589; b03 = 53.536152954556727; a03 = 1.069358407707312; w1 = 2*PI*fc; }; //===================== Elliptic Highpass Filters ===================== // USAGE: // _ : highpass3e(fc) : _ // _ : highpass6e(fc) : _ // where fc = -3dB frequency in Hz //----------------------------- highpass3e ----------------------------- // Third-order Elliptic (Cauer) highpass filter // DESIGN: Inversion of lowpass3e wrt unit circle in s plane (s <- 1/s) // highpass3e(fc) = tf2s(b01/a01,b11/a01,b21/a01,a11/a01,1/a01,w1) : tf1s(1/a02,0,1/a02,w1) with { a11 = 0.802636764161030; a01 = 1.412270893774204; a02 = 0.822445908998816; b21 = 0.019809144837789; b11 = 0; b01 = 1.161516418982696; w1 = 2*PI*fc; }; //----------------------------- highpass6e ----------------------------- // Sixth-order Elliptic/Cauer highpass filter // METHOD: Inversion of lowpass3e wrt unit circle in s plane (s <- 1/s) // highpass6e(fc) = tf2s(b01/a01,b11/a01,b21/a01,a11/a01,1/a01,w1) : tf2s(b02/a02,b12/a02,b22/a02,a12/a02,1/a02,w1) : tf2s(b03/a03,b13/a03,b23/a03,a13/a03,1/a03,w1) with { b21 = 0.000099999997055; a21 = 1; b11 = 0; a11 = 0.782413046821645; b01 = 0.000433227200555; a01 = 0.245291508706160; b22 = 1; a22 = 1; b12 = 0; a12 = 0.512478641889141; b02 = 7.621731298870603; a02 = 0.689621364484675; b23 = 1; a23 = 1; b13 = 0; a13 = 0.168404871113589; b03 = 53.536152954556727; a03 = 1.069358407707312; w1 = 2*PI*fc; }; //================== Butterworth Bandpass/Bandstop Filters ===================== // Order 2*Nh Butterworth bandpass filter made using the transformation // s <- s + wc^2/s on lowpass(Nh), where wc is the desired bandpass center // frequency. The lowpass(Nh) cutoff w1 is half the desired bandpass width. // A notch-like "bandstop" filter is similarly made from highpass(Nh). // // USAGE: // _ : bandpass(Nh,fl,fu) : _ // _ : bandstop(Nh,fl,fu) : _ // where // Nh = HALF the desired bandpass/bandstop order (which is therefore even) // fl = lower -3dB frequency in Hz // fu = upper -3dB frequency in Hz // Thus, the passband (stopband) width is fu-fl, // and its center frequency is (fl+fu)/2. // // REFERENCE: // http://cnx.org/content/m16913/latest/ // bandpass(Nh,fl,fu) = bandpass0_bandstop1(0,Nh,fl,fu); bandstop(Nh,fl,fu) = bandpass0_bandstop1(1,Nh,fl,fu); bandpass0_bandstop1(s,Nh,fl,fu) = bpbsr(s,Nh,Nh,fl,fu) with { wl = 2*PI*fl; // digital (z-plane) lower passband edge wu = 2*PI*fu; // digital (z-plane) upper passband edge c = 2.0*SR; // bilinear transform scaling used in tf2sb, tf1sb wla = c*tan(wl/c); // analog (s-splane) lower cutoff wua = c*tan(wu/c); // analog (s-splane) upper cutoff wc = sqrt(wla*wua); // s-plane center frequency w1 = wua - wc^2/wua; // s-plane lowpass prototype cutoff bpbsr(s,0,Nh,fl,fu) = _; bpbsr(s,1,Nh,fl,fu) = tf1sb(s,1-s,1,w1,wc); bpbsr(s,O,Nh,fl,fu) = bpbsr(s,O-2,Nh,fl,fu) : tf2sb(s,0,(1-s),a1s,1,w1,wc) with { parity = Nh % 2; S = (O-parity)/2; // current section number a1s = -2*cos(-PI + (1-parity)*PI/(2*Nh) + (S-1+parity)*PI/Nh); }; }; //======================= Elliptic Bandpass Filters ============================ //----------------------------- bandpass6e ----------------------------- // Order 12 elliptic bandpass filter analogous to bandpass(6) above. // bandpass6e(fl,fu) = tf2sb(b21,b11,b01,a11,a01,w1,wc) : tf1sb(0,1,a02,w1,wc) with { a11 = 0.802636764161030; // In octave: format long; poly(p(1:2)) a01 = 1.412270893774204; a02 = 0.822445908998816; // poly(p(3)) b21 = 0.019809144837789; // poly(z) b11 = 0; b01 = 1.161516418982696; wl = 2*PI*fl; // digital (z-plane) lower passband edge wu = 2*PI*fu; // digital (z-plane) upper passband edge c = 2.0*SR; // bilinear transform scaling used in tf2sb, tf1sb wla = c*tan(wl/c); // analog (s-splane) lower cutoff wua = c*tan(wu/c); // analog (s-splane) upper cutoff wc = sqrt(wla*wua); // s-plane center frequency w1 = wua - wc^2/wua; // s-plane lowpass cutoff }; //----------------------------- bandpass12e ----------------------------- bandpass12e(fl,fu) = tf2sb(b21,b11,b01,a11,a01,w1,wc) : tf2sb(b22,b12,b02,a12,a02,w1,wc) : tf2sb(b23,b13,b03,a13,a03,w1,wc) with { // octave script output: b21 = 0.000099999997055; a21 = 1; b11 = 0; a11 = 0.782413046821645; b01 = 0.000433227200555; a01 = 0.245291508706160; b22 = 1; a22 = 1; b12 = 0; a12 = 0.512478641889141; b02 = 7.621731298870603; a02 = 0.689621364484675; b23 = 1; a23 = 1; b13 = 0; a13 = 0.168404871113589; b03 = 53.536152954556727; a03 = 1.069358407707312; wl = 2*PI*fl; // digital (z-plane) lower passband edge wu = 2*PI*fu; // digital (z-plane) upper passband edge c = 2.0*SR; // bilinear transform scaling used in tf2sb, tf1sb wla = c*tan(wl/c); // analog (s-splane) lower cutoff wua = c*tan(wu/c); // analog (s-splane) upper cutoff wc = sqrt(wla*wua); // s-plane center frequency w1 = wua - wc^2/wua; // s-plane lowpass cutoff }; //================= Parametric Equalizers (Shelf, Peaking) ================== // REFERENCES // - http://en.wikipedia.org/wiki/Equalization // - Digital Audio Signal Processing, Udo Zolzer, Wiley, 1999, p. 124 // - http://www.harmony-central.com/Computer/Programming/Audio-EQ-Cookbook.txt // http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt // - https://ccrma.stanford.edu/~jos/filters/Low_High_Shelving_Filters.html // - https://ccrma.stanford.edu/~jos/filters/Peaking_Equalizers.html // - maxmsp.lib in the Faust distribution // - bandfilter.dsp in the faust2pd distribution //----------------------------- low_shelf ------------------------------------ // First-order "low shelf" filter (gain boost|cut between dc and some frequency) // USAGE: lowshelf(L0,fx), where // L0 = desired boost (dB) between dc and fx // fx = desired transition frequency (Hz) from boost to unity gain // The gain at SR/2 is constrained to be 1. // low_shelf = low_shelf3; // default low_shelf1(L0,fx,x) = x + (db2linear(L0)-1)*lowpass(1,fx,x); low_shelf1_l(G0,fx,x) = x + (G0-1)*lowpass(1,fx,x); low_shelf3(L0,fx,x) = x + (db2linear(L0)-1)*lowpass(3,fx,x); low_shelf5(L0,fx,x) = x + (db2linear(L0)-1)*lowpass(5,fx,x); //----------------------------- high_shelf ----------------------------------- // First-order "high shelf" filter (gain boost|cut above some frequency) // // USAGE: high_shelf(Lpi,fx), where // Lpi = desired boost or cut (dB) between fx and SR/2 // fx = desired transition frequency in Hz // The gain at dc is constrained to be 1 // high_shelf=high_shelf3; //default high_shelf1(Lpi,fx,x) = x + (db2linear(Lpi)-1)*highpass(1,fx,x); high_shelf1_l(Gpi,fx,x) = x + (Gpi-1)*highpass(1,fx,x); high_shelf3(Lpi,fx,x) = x + (db2linear(Lpi)-1)*highpass(3,fx,x); high_shelf5(Lpi,fx,x) = x + (db2linear(Lpi)-1)*highpass(5,fx,x); //-------------------------------- peak_eq ----------------------------------- // Second order "peaking equalizer" section // (gain boost or cut near some frequency) // Also called a "parametric equalizer" section // USAGE: _ : peak_eq(Lfx,fx,B) : _; // where // Lfx = level (dB) at fx // fx = peak frequency (Hz) // B = bandwidth (B) of peak in Hz // peak_eq(Lfx,fx,B) = tf2s(1,b1s,1,a1s,1,wx) with { T = float(1.0/SR); Bw = B*T/sin(wx*T); // prewarp s-bandwidth for more accuracy in z-plane a1 = PI*Bw; b1 = g*a1; g = db2linear(abs(Lfx)); b1s = select2(Lfx>0,a1,b1); // When Lfx>0, pole dominates bandwidth a1s = select2(Lfx>0,b1,a1); // When Lfx<0, zero dominates wx = 2*PI*fx; }; //------------------------------- peak_eq_cq --------------------------------- // Constant-Q second order peaking equalizer section // USAGE: _ : peak_eq_cq(Lfx,fx,Q) : _; // where // Lfx = level (dB) at fx // fx = boost or cut frequency (Hz) // Q = "Quality factor" = fx/B where B = bandwidth of peak in Hz // peak_eq_cq(Lfx,fx,Q) = peak_eq(Lfx,fx,fx/Q); //------------------------------- peak_eq_rm --------------------------------- // Regalia-Mitra second order peaking equalizer section // USAGE: _ : peak_eq_rm(Lfx,fx,tanPiBT) : _; // where // Lfx = level (dB) at fx // fx = boost or cut frequency (Hz) // tanPiBT = tan(PI*B/SR), where B = -3dB bandwidth (Hz) when 10^(Lfx/20) = 0 // ~ PI*B/SR for narrow bandwidths B // // REFERENCE: // P.A. Regalia, S.K. Mitra, and P.P. Vaidyanathan, // "The Digital All-Pass Filter: A Versatile Signal Processing Building Block" // Proceedings of the IEEE, 76(1):19-37, Jan. 1988. (See pp. 29-30.) // peak_eq_rm(Lfx,fx,tanPiBT) = _ <: _,A,_ : +,- : *(0.5),*(K/2.0) : + with { A = tf2(k2, k1*(1+k2), 1, k1*(1+k2), k2) <: _,_; // allpass k1 = 0.0 - cos(2.0*PI*fx/SR); k2 = (1.0 - tanPiBT)/(1.0 + tanPiBT); K = db2linear(Lfx); }; //-------------------------- parametric_eq_demo ------------------------------ // USAGE: _ : parametric_eq_demo: _ ; parametric_eq_demo = // input_signal : low_shelf(LL,FL) : peak_eq(LP,FP,BP) : high_shelf(LH,FH) // Recommended: // : mth_octave_spectral_level_demo(2) // half-octave spectrum analyzer with { eq_group(x) = hgroup("[0] PARAMETRIC EQ SECTIONS [tooltip: See Faust's filter.lib for info and pointers]",x); ls_group(x) = eq_group(vgroup("[1] Low Shelf",x)); LL = ls_group(hslider("[0] Low Boost|Cut [unit:dB] [style:knob] [tooltip: Amount of low-frequency boost or cut in decibels]", 0,-40,40,0.1)); FL = ls_group(hslider("[1] Transition Frequency [unit:Hz] [style:knob] [tooltip: Transition-frequency from boost (cut) to unity gain]", 200,1,5000,1)); pq_group(x) = eq_group(vgroup("[2] Peaking Equalizer [tooltip: Parametric Equalizer sections from filter.lib]",x)); LP = pq_group(hslider("[0] Peak Boost|Cut [unit:dB] [style:knob] [tooltip: Amount of local boost or cut in decibels]", 0,-40,40,0.1)); FP = pq_group(hslider("[1] Peak Frequency [unit:PK] [style:knob] [tooltip: Peak Frequency in Piano Key (PK) units (A-440= 49 PK)]", 49,1,100,1)) : smooth(0.999) : pianokey2hz with { pianokey2hz(x) = 440.0*pow(2.0, (x-49.0)/12); }; Q = pq_group(hslider("[2] Peak Q [style:knob] [tooltip: Quality factor (Q) of the peak = center-frequency/bandwidth]", 40,1,50,0.1)); BP = FP/Q; hs_group(x) = eq_group(vgroup("[3] High Shelf [tooltip: A high shelf provides a boost or cut above some frequency]",x)); LH = hs_group(hslider("[0] High Boost|Cut [unit:dB] [style:knob] [tooltip: Amount of high-frequency boost or cut in decibels]", 0,-40,40,.1)); FH = hs_group(hslider("[1] Transition Frequency [unit:Hz] [style:knob] [tooltip: Transition-frequency from boost (cut) to unity gain]", 8000,20,10000,1)); }; //========================= Lagrange Interpolation ======================== // Reference: // https://ccrma.stanford.edu/~jos/pasp/Lagrange_Interpolation.html // //------------------ fdelay1, fdelay2, fdelay3, fdelay4 --------------- // Delay lines interpolated using Lagrange interpolation // USAGE: _ : fdelayN(maxdelay, delay, inputsignal) : _ // (exactly like fdelay in music.lib) // where N=1,2,3, or 4 is the order of the Lagrange interpolation polynomial. // // NOTE: requested delay should not be less than (N-1)/2. // // NOTE: While the implementations below appear to use multiple delay lines, // they in fact use only one thanks to optimization by the Faust compiler. // first-order case (linear interpolation) - equivalent to fdelay in music.lib // delay d in [0,1] fdelay1(n,d,x) = delay(n,id,x)*(1 - fd) + delay(n,id+1,x)*fd with { id = int(d); fd = frac(d); }; // second-order (quadratic) case, delay in [0.5,1.5] // delay d should be at least 0.5 fdelay2(n,d,x) = delay(n,id,x)*(1-fd)*(2-fd)/2 + delay(n,id+1,x)*(2-fd)*fd + delay(n,id+2,x)*(fd-1)*fd/2 with { o = 0.49999; // offset to make life easy for interpolator dmo = d - o; // assumed nonnegative id = int(dmo); fd = o + frac(dmo); }; // third-order (cubic) case, delay in [1,2] // delay d should be at least 1 fdelay3(n,d,x) = delay(n,id,x) * (0-fdm1*fdm2*fdm3)/6 + delay(n,id+1,x) * fd*fdm2*fdm3/2 + delay(n,id+2,x) * (0-fd*fdm1*fdm3)/2 + delay(n,id+3,x) * fd*fdm1*fdm2/6 with { id = int(d-1); fd = 1+frac(d); fdm1 = fd-1; fdm2 = fd-2; fdm3 = fd-3; }; // fourth-order (quartic) case, delay in [1.5,2.5] // delay d should be at least 1.5 fdelay4(n,d,x) = delay(n,id,x) * fdm1*fdm2*fdm3*fdm4/24 + delay(n,id+1,x) * (0-fd*fdm2*fdm3*fdm4)/6 + delay(n,id+2,x) * fd*fdm1*fdm3*fdm4/4 + delay(n,id+3,x) * (0-fd*fdm1*fdm2*fdm4)/6 + delay(n,id+4,x) * fd*fdm1*fdm2*fdm3/24 with { //v1: o = 1; o = 1.49999; dmo = d - o; // assumed nonnegative id = int(dmo); fd = o + frac(dmo); fdm1 = fd-1; fdm2 = fd-2; fdm3 = fd-3; fdm4 = fd-4; }; // fifth-order case, delay in [2,3] // delay d should be at least 2 fdelay5(n,d,x) = delay(n,id,x) * -fdm1*fdm2*fdm3*fdm4*fdm5/120 + delay(n,id+1,x) * fd* fdm2*fdm3*fdm4*fdm5/24 + delay(n,id+2,x) * -fd*fdm1* fdm3*fdm4*fdm5/12 + delay(n,id+3,x) * fd*fdm1*fdm2* fdm4*fdm5/12 + delay(n,id+4,x) * -fd*fdm1*fdm2*fdm3* fdm5/24 + delay(n,id+5,x) * fd*fdm1*fdm2*fdm3*fdm4 /120 with { //v1: o = 1; o = 1.99999; dmo = d - o; // assumed nonnegative id = int(dmo); fd = o + frac(dmo); fdm1 = fd-1; fdm2 = fd-2; fdm3 = fd-3; fdm4 = fd-4; fdm5 = fd-5; }; //====================== Thiran Allpass Interpolation ===================== // Reference: // https://ccrma.stanford.edu/~jos/pasp/Thiran_Allpass_Interpolators.html // //---------------- fdelay1a, fdelay2a, fdelay3a, fdelay4a ------------- // Delay lines interpolated using Thiran allpass interpolation // USAGE: fdelayNa(maxdelay, delay, inputsignal) // (exactly like fdelay in music.lib) // where N=1,2,3, or 4 is the order of the Thiran interpolation filter, // and the delay argument is at least N - 1/2. // // (Move the following and similar notes above to filter-lib-doc.txt?) // // NOTE: The interpolated delay should not be less than N - 1/2. // (The allpass delay ranges from N - 1/2 to N + 1/2.) // This constraint can be alleviated by altering the code, // but be aware that allpass filters approach zero delay // by means of pole-zero cancellations. // The delay range [N-1/2,N+1/2] is not optimal. What is? // // NOTE: Delay arguments too small will produce an UNSTABLE allpass! // // NOTE: Because allpass interpolation is recursive, it is not as robust // as Lagrange interpolation under time-varying conditions. // (You may hear clicks when changing the delay rapidly.) // // first-order allpass interpolation, delay d in [0.5,1.5] fdelay1a(n,d,x) = delay(n,id,x) : tf1(eta,1,eta) with { o = 0.49999; // offset to make life easy for allpass dmo = d - o; // assumed nonnegative id = int(dmo); fd = o + frac(dmo); eta = (1-fd)/(1+fd); // allpass coefficient }; // second-order allpass delay in [1.5,2.5] fdelay2a(n,d,x) = delay(n,id,x) : tf2(a2,a1,1,a1,a2) with { o = 1.49999; dmo = d - o; // delay range is [order-1/2, order+1/2] id = int(dmo); fd = o + frac(dmo); a1o2 = (2-fd)/(1+fd); // share some terms (the compiler does this anyway) a1 = 2*a1o2; a2 = a1o2*(1-fd)/(2+fd); }; // third-order allpass delay in [2.5,3.5] // delay d should be at least 2.5 fdelay3a(n,d,x) = delay(n,id,x) : iir((a3,a2,a1,1),(a1,a2,a3)) with { o = 2.49999; dmo = d - o; id = int(dmo); fd = o + frac(dmo); a1o3 = (3-fd)/(1+fd); a2o3 = a1o3*(2-fd)/(2+fd); a1 = 3*a1o3; a2 = 3*a2o3; a3 = a2o3*(1-fd)/(3+fd); }; // fourth-order allpass delay in [3.5,4.5] // delay d should be at least 3.5 fdelay4a(n,d,x) = delay(n,id,x) : tf4(a4,a3,a2,a1,1,a1,a2,a3,a4) with { o = 3.49999; dmo = d - o; id = int(dmo); fd = o + frac(dmo); a1o4 = (4-fd)/(1+fd); a2o6 = a1o4*(3-fd)/(2+fd); a3o4 = a2o6*(2-fd)/(3+fd); a1 = 4*a1o4; a2 = 6*a2o6; a3 = 4*a3o4; a4 = a3o4*(1-fd)/(4+fd); }; //================ Mth-Octave Filter-Banks and Spectrum-Analyzers ============ // Mth-octave filter-banks and spectrum-analyzers split the input signal into a // bank of parallel signals, one for each spectral band. The parameters are // // M = number of band-slices per octave (>1) // N = total number of bands (>2) // ftop = upper bandlimit of the Mth-octave bands (_):attach with { display = par(i,N,dbmeter(i)); dbmeter(i) = abs : smooth(tau2pole(tau)) : linear2db : +(dB_offset) : meter(N-i-1); meter(i) = speclevel_group(vbargraph("[%2i] [unit:dB] [tooltip: Spectral Band Level in dB]", -50, 10)); // Can M be included in the label string somehow? speclevel_group(x) = hgroup("[0] CONSTANT-Q SPECTRUM ANALYZER (6E) [tooltip: See Faust's filter.lib for documentation and references]", x); }; mth_octave_spectral_level_default = mth_octave_spectral_level6e; spectral_level = mth_octave_spectral_level(2,10000,20); // simplest case //---------------------- mth_octave_spectral_level_demo ---------------------- // Demonstrate mth_octave_spectral_level in a standalone GUI. // // USAGE: _ : mth_octave_spectral_level_demo(BandsPerOctave); mth_octave_spectral_level_demo(M) = mth_octave_spectral_level_default(M,ftop,N,tau,dB_offset) with { // Span nearly 10 octaves so that lowest band-edge is at // ftop*2^(-Noct+2) = 40 Hz when ftop=10 kHz: N = int(10*M); // without 'int()', segmentation fault observed for M=1.67 ftop = 10000; ctl_group(x) = hgroup("[1] SPECTRUM ANALYZER CONTROLS", x); tau = ctl_group(hslider("[0] Level Averaging Time [unit:sec] [tooltip: band-level averaging time in seconds]", 0.1,0,1,0.01)); dB_offset = ctl_group(hslider("[1] Level dB Offset [unit:dB] [tooltip: Level offset in decibels]", 50,0,100,1)); }; spectral_level_demo = mth_octave_spectral_level_demo(1.5); // 2/3 octave //---------------- (third|half)_octave_(analyzer|filterbank) ----------------- // Named special cases of mth_octave_* with defaults filled in: third_octave_analyzer(N) = mth_octave_analyzer_default(3,10000,N); third_octave_filterbank(N) = mth_octave_filterbank_default(3,10000,N); // Third-Octave Filter-Banks have been used in audio for over a century. // See, e.g., // Acoustics [the book], by L. L. Beranek // Amer. Inst. Physics for the Acoustical Soc. America, // http://asa.aip.org/publications.html, 1986 (1st ed.1954) // Third-octave bands across the audio spectrum are too wide for current // typical computer screens, so half-octave bands are the default: half_octave_analyzer(N) = mth_octave_analyzer_default(2,10000,N); half_octave_filterbank(N) = mth_octave_filterbank_default(2,10000,N); octave_filterbank(N) = mth_octave_filterbank_default(1,10000,N); octave_analyzer(N) = mth_octave_analyzer_default(1,10000,N); //=========================== Filter-Bank Demos ============================== // Graphic Equalizer: Each filter-bank output signal routes through a fader. // // USAGE: _ : mth_octave_filterbank_demo(M) : _ // where // M = number of bands per octave mth_octave_filterbank_demo(M) = bp1(bp,mthoctavefilterbankdemo) with { bp1 = component("effect.lib").bypass1; mofb_group(x) = vgroup("CONSTANT-Q FILTER BANK (Butterworth dyadic tree) [tooltip: See Faust's filter.lib for documentation and references]", x); bypass_group(x) = mofb_group(hgroup("[0]", x)); slider_group(x) = mofb_group(hgroup("[1]", x)); N = 10*M; // total number of bands (highpass band, octave-bands, dc band) ftop = 10000; mthoctavefilterbankdemo = chan; chan = mth_octave_filterbank_default(M,ftop,N) : sum(i,N,(*(db2linear(fader(N-i))))); fader(i) = slider_group(vslider("[%2i] [unit:dB] [tooltip: Bandpass filter gain in dB]", -10, -70, 10, 0.1)) : smooth(0.999); bp = bypass_group(checkbox("[0] Bypass [tooltip: When this is checked, the filter-bank has no effect]")); }; filterbank_demo = mth_octave_filterbank_demo(1); // octave-bands = default //=========== Arbritary-Crossover Filter-Banks and Spectrum Analyzers ======== // These are similar to the Mth-octave filter-banks above, except that the // band-split frequencies are passed explicitly as arguments. // // USAGE: // _ : filterbank (O,freqs) : par(i,N,_); // Butterworth band-splits // _ : filterbanki(O,freqs) : par(i,N,_); // Inverted-dc version // _ : analyzer (O,freqs) : par(i,N,_); // No delay equalizer // // where // O = band-split filter order (ODD integer required for filterbank[i]) // freqs = (fc1,fc2,...,fcNs) [in numerically ascending order], where // Ns=N-1 is the number of octave band-splits // (total number of bands N=Ns+1). // // If frequencies are listed explicitly as arguments, enclose them in parens: // // _ : filterbank(3,(fc1,fc2)) : _,_,_ // // ACKNOWLEDGMENT // Technique for processing a variable number of signal arguments due // to Yann Orlarey (as is the entire Faust framework!) // //------------------------------ analyzer -------------------------------------- analyzer(O,lfreqs) = _ <: bsplit(nb) with { nb = count(lfreqs); fc(n) = take(n, lfreqs); lp(n) = lowpass(O,fc(n)); hp(n) = highpass(O,fc(n)); bsplit(0) = _; bsplit(i) = hp(i), (lp(i) <: bsplit(i-1)); }; //----------------------------- filterbank ------------------------------------- filterbank(O,lfreqs) = analyzer(O,lfreqs) : delayeq with { nb = count(lfreqs); fc(n) = take(n, lfreqs); ap(n) = highpass_plus_lowpass(O,fc(n)); delayeq = par(i,nb-1,apchain(nb-1-i)),_,_; apchain(0) = _; apchain(i) = ap(i) : apchain(i-1); }; //----------------------------- filterbanki ------------------------------------ filterbanki(O,lfreqs) = _ <: bsplit(nb) with { fc(n) = take(n, lfreqs); lp(n) = lowpass(O,fc(n)); hp(n) = highpass(O,fc(n)); ap(n) = highpass_minus_lowpass(O,fc(n)); bsplit(0) = *(-1.0); bsplit(i) = (hp(i) : delayeq(i-1)), (lp(i) <: bsplit(i-1)); delayeq(0) = _; // moving the *(-1) here inverts all outputs BUT dc delayeq(i) = ap(i) : delayeq(i-1); };