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Chapter 1

Introduction

FAUST (Functional Audio Stream) is a functional programming language specifically
designed for real-time signal processing and synthesis. FAUST targets high-performance
signal processing applications and audio plug-ins for a variety of platforms and stan-
dards.

1.1 Design Principles

Various principles have guided the design of FAUST:

• FAUST is a specification language. It aims at providing an adequate notation to
describe signal processors from a mathematical point of view. FAUST is, as much
as possible, free from implementation details.

• FAUST programs are fully compiled, not interpreted. The compiler translates
FAUST programs into equivalent C++ programs taking care of generating the
most efficient code. The result can generally compete with, and sometimes
even outperform, C++ code written by seasoned programmers.

• The generated code works at the sample level. It is therefore suited to imple-
ment low-level DSP functions like recursive filters. Moreover the code can be
easily embedded. It is self-contained and doesn’t depend of any DSP library or
runtime system. It has a very deterministic behavior and a constant memory
footprint.

• The semantic of FAUST is simple and well defined. This is not just of aca-
demic interest. It allows the FAUST compiler to be semantically driven. Instead
of compiling a program literally, it compiles the mathematical function it de-
notes. This feature is useful for example to promote components reuse while
preserving optimal performance.

• FAUST is a textual language but nevertheless block-diagram oriented. It ac-
tually combines two approaches: functional programming and algebraic block-
diagrams. The key idea is to view block-diagram construction as function com-
position. For that purpose, FAUST relies on a block-diagram algebra of five
composition operations (: , ~ <: :>).

7



8 CHAPTER 1. INTRODUCTION

• Thanks to the notion of architecture, FAUST programs can be easily deployed
on a large variety of audio platforms and plugin formats without any change to
the FAUST code.

1.2 Signal Processor Semantic

A FAUST program describes a signal processor. The role of a signal processor is to
transforms a group of (possibly empty) input signals in order to produce a group of
(possibly empty) output signals. Most audio equipments can be modeled as signal
processors. They have audio inputs, audio outputs as well as control signals interfaced
with sliders, knobs, vu-meters, etc.

More precisely :

• A signal s is a discrete function of time s :N→R . The value of signal s at time
FAUST considers two type

of signals: integer signals
(s :N→Z) and floating

point signals (s :N→Q).
Exchanges with the

outside world are, by
convention, made using

floating point signals. The
full range is represented

by sample values between
-1.0 and +1.0.

t is written s(t ). The set S=N→R is the set of all possible signals.

• A group of n signals (a n-tuple of signals) is written (s1, . . . , sn) ∈ Sn . The empty
tuple, single element of S0 is notated ().

• A signal processors p, is a function from n-tuples of signals to m-tuples of signals
p : Sn → Sm . The set P =

⋃

n,m S
n → Sm is the set of all possible signal

processors.

As an example, let’s express the semantic of the FAUST primitive +. Like any FAUST
expression, it is a signal processor. Its signature is S2→ S. It takes two input signals
X0 and X1 and produce an output signal Y such that Y (t ) =X0(t )+X1(t ).

Numbers are signal processors too. For example the number 3 has signature S0→ S.
It takes no input signals and produce an output signal Y such that Y (t ) = 3.



Chapter 2

Compiling and installing
FAUST

The FAUST source distribution faust-0.9.46.tar.gz can be downloaded from
sourceforge (http://sourceforge.net/projects/faudiostream/).

2.1 Organization of the distribution

The first thing is to decompress the downloaded archive.

tar xzf faust -0.9.46. tar.gz

The resulting faust-0.9.46/ folder should contain the following elements:

architecture/ FAUST libraries and architecture files
benchmark tools to measure the efficiency of the generated code
compiler/ sources of the FAUST compiler
examples/ examples of FAUST programs
syntax-highlighting/ support for syntax highlighting for several editors
documentation/ FAUST’s documentation, including this manual
tools/ tools to produce audio applications and plugins
COPYING license information
Makefile Makefile used to build and install FAUST
README instructions on how to build and install FAUST

2.2 Compilation

FAUST has no dependencies outside standard libraries. Therefore the compilation
should be straightforward. There is no configuration phase, to compile the FAUST
compiler simply do :

cd faust -0.9.46/

make

9
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If the compilation was successful you can test the compiler before installing it:

[cd faust -0.9.46/]

./ compiler/faust -v

It should output:

FAUST , DSP to C++ compiler , Version 0.9.46

Copyright (C) 2002 -2012 , GRAME - Centre ...

Then you can also try to compile one of the examples :

[cd faust -0.9.46/]

./ compiler/faust examples/noise.dsp

It should produce some C++ code on the standard output

2.3 Installation

You can install FAUST with:

[cd faust -0.9.46/]

sudo make install

or

[cd faust -0.9.46/]

su

make install

depending on your system.

2.4 Compilation of the examples

Once FAUST correctly installed, you can have a look at the provided examples in the
examples/ folder. This folder contains a Makefile with all the required instructions
to build these examples for various architectures, either standalone audio applications

An architecture file
provides the code needed

to connect a signal
processor to the outside

world. It typically defines
the audio

communications and user
interface.

or plugins.

The command make help will list the available targets. Before using a specific tar-
get, make sure you have the appropriate development tools, libraries and headers
installed. For example to compile the examples as ALSA applications with a GTK
user interface do a make alsagtk. This will create a alsagtkdir/ subfolder with all
the binaries.



Chapter 3

FAUST syntax

This section describes the syntax of FAUST. Figure 3.1 gives an overview of the vari-
ous concepts and where they are defined in this section.

3.2.1 Declarations 3.2.2 File Imports 3.2.3 Documentation

3.3.1 Simple

3.4 Expressions

3.3.2 Function 3.3.3 Pattern

3.4.1 Diag.

3.4.2.1 Math

3.5 Primitives

3.4.2.2 Bitwise 3.4.2.3 Compare

3.4.3 Time 3.4.4 Lexical 3.4.5 Foreign 3.4.6 Lambda3.4.2 Infix

3.1 Program

3.2 Statements

3.3 Definitions

Figure 3.1: Overview of FAUST syntax

As we will see, definitions and expressions have a central role.
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12 CHAPTER 3. FAUST SYNTAX

3.1 FAUST program

A FAUST program is essentially a list of statements. These statements can be declara-
tions, imports, definitions and documentation tags, with optional C++ style (//... and
/*...*/) comments.

program

- statement�
�

�


-

Here is a short FAUST program that implements of a simple noise generator. It ex-
hibits various kind of statements : two declarations, an import, a comment and a
definition. We will see later on documentation statements (3.2.3).

declare name "noise";

declare copyright "(c)GRAME 2006";

import("music.lib");

// noise level controlled by a slider

process = noise * vslider("volume", 0, 0, 1, 0.1);

The keyword process is the equivalent of main in C/C++. Any FAUST program,
to be valid, must at least define process.

3.2 Statements

The statements of a FAUST program are of four kinds : metadata declarations, file
imports, definitions and documentation. All statements but documentation end with
a semicolon (;).

statement

- declaration�
�- fileimport

�- definition

�- documentation

�







-

3.2.1 Declarations

Meta-data declarations (for example declare name "noise";) are optional and typ-
ically used to document a FAUST project.
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declaration

- declare
�� �
- key- string- ;

���
-
key

- identifier -

Contrary to regular comments, these declarations will appear in the C++ code gen-
erated by the compiler. A good practice is to start a FAUST program with some
standard declarations:

declare name "MyProgram";

declare author "MySelf";

declare copyright "MyCompany";

declare version "1.00";

declare license "BSD";

3.2.2 Imports

File imports allow to import definitions from other source files.

fileimport

- import
�� �
- (

���
- filename- )
���
- ;

���
-
For example import("math.lib"); imports the definitions of the math.lib library,
a set of additional mathematical functions provided as foreign functions.

3.2.3 Documentation

Documentation statements are optional and typically used to control the generation
of the mathematical documentation of a FAUST program. This documentation sys-
tem is detailed chapter 7. In this section we will essentially describe the documenta-
tion statements syntax.

A documentation statement starts with an opening <mdoc> tag and ends with a clos-
ing </mdoc> tag. Free text content, typically in LATEX format, can be placed in be-
tween these two tags.
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documentation

- <mdoc>
�� �
 - freetext�

�- equation

�- diagram

�- metadata

�- notice

�- listing

�











�

�

�




- </mdoc>
�� �
-

Moreover, optional sub-tags can be inserted in the text content itself to require the
generation, at the insertion point, of mathematical equations, graphical block-diagrams,
FAUST source code listing and explanation notice.

equation

- <equation>
�� �
- expression- </equation>

�� �
-
The generation of the mathematical equations of a FAUST expression can be re-
quested by placing this expression between an opening <equation> and a closing </
equation> tag. The expression is evaluated within the lexical context of the FAUST
program.

diagram

- <diagram>
�� �
- expression- </diagram>

�� �
-
Similarly, the generation of the graphical block-diagram of a FAUST expression can
be requested by placing this expression between an opening <diagram> and a closing
</diagram> tag. The expression is evaluated within the lexical context of the FAUST
program.

metadata

- <metadata>
�� �
- keyword- </metadata>

�� �
-
The <metadata> tags allow to reference FAUST metadatas (cf. declarations), calling
the corresponding keyword.

notice

- <notice />
�� �
-
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The <notice /> empty-element tag is used to generate the conventions used in the
mathematical equations.

listing

- <listing
�� �
�

�- listingattribute�
�

�



�


- />
�� �
-

listingattribute

- mdoctags
�� �
�

�- dependencies
�� �
�- distributed
�� �


�




- =
���
- "true"

�� �
�
�- "false"

�� �

�


-

The <listing /> empty-element tag is used to generate the listing of the FAUST
program. Its three attributes mdoctags, dependencies and distributed enable or
disable respectively <mdoc> tags, other files dependencies and distribution of inter-
leaved faust code between <mdoc> sections.

3.3 Definitions

A definition associates an identifier with an expression it stands for.

Definitions are essentially a convenient shortcut avoiding to type long expressions.
During compilation, more precisely during the evaluation stage, identifiers are re-
placed by their definitions. It is therefore always equivalent to use an identifier or
directly its definition. Please note that multiple definitions of a same identifier are
not allowed, unless it is a pattern matching based definition.

3.3.1 Simple Definitions

The syntax of a simple definition is:

definition

- identifier- =
���
- expression- ;

���
-
For example here is the definition of random, a simple pseudo-random number gen-
erator:

random = +(12345) ~ *(1103515245);
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3.3.2 Function Definitions

Definitions with formal parameters correspond to functions definitions.

definition

- identifier- (
���
- parameter�

� ,
���
�

�


- )
���
- =

���
- expression- ;
���
-

For example the definition of linear2db, a function that converts linear values to
decibels, is :

linear2db(x) = 20* log10(x);

Please note that this notation is only a convenient alternative to the direct use of
lambda-abstractions (also called anonymous functions). The following is an equivalent
definition of linear2db using a lambda-abstraction:

linear2db = \(x).(20* log10(x));

3.3.3 Definitions with pattern matching

Moreover, formal parameters can also be full expressions representing patterns.

definition

- identifier- (
���
- pattern�

� ,
���
�

�


- )
���
- =

���
- expression- ;
���
-

pattern

- identifier�
�- expression

�


-

This powerful mechanism allows to algorithmically create and manipulate block di-
agrams expressions. Let’s say that you want to describe a function to duplicate an
expression several times in parallel:

duplicate(1,x) = x;

duplicate(n,x) = x, duplicate(n-1,x);

Please note that this last definition is a convenient alternative to the more verbose :

duplicate = case {

(1,x) => x;

(n,x) => duplicate(n-1,x);

};
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Here is another example to count the number of elements of a list. Please note that
we simulate lists using parallel composition : (1,2,3,5,7,11). The main limitation of
this approach is that there is no empty list. Moreover lists of only one element are
represented by this element :

count((x,xs)) = 1+count(xs);

count(x) = 1;

If we now write count(duplicate(10,666)) the expression will be evaluated to 10.

Please note that the order of pattern matching rules matters. The more specific rules
must precede the more general rules. When this order is not respected, as in :

count(x) = 1;

count((x,xs)) = 1+count(xs);

the first rule will always match and the second rule will never be called.

3.4 Expressions

Despite its textual syntax, FAUST is conceptually a block-diagram language. FAUST
expressions represent DSP block-diagrams and are assembled from primitive ones us-
ing various composition operations. More traditional numerical expressions in infix
notation are also possible. Additionally FAUST provides time based expressions, like
delays, expressions related to lexical environments, expressions to interface with for-
eign function and lambda expressions.

expression

- diagram�
�- numerical

�- time

�- lexical

�- foreign

�- lambda

�











-

3.4.1 Diagram Expressions

Diagram expressions are assembled from primitive ones using either binary compo-
sition operations or high level iterative constructions.

diagramexp

- diagcomposition�
�- diagiteration

�


-
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Diagram composition operations

Five binary composition operations are available to combine block-diagrams : recur-
sion, parallel, sequential, split and merge composition. One can think of each of these
composition operations as a particular way to connect two block diagrams.

diagcomposition

- expression - ∼
���
�

�- ,
���
�- :
���
�- <:
�� �
�- :>
�� �


�









- expression -

To describe precisely how these connections are done, we have to introduce some no-
tation. The number of inputs and outputs of a bloc-diagram A are notated inputs(A)
and outputs(A) . The inputs and outputs themselves are respectively notated : [0]A,
[1]A, [2]A, . . . and A[0], A[1], A[2], etc..

For each composition operation between two block-diagrams A and B we will de-
scribe the connections A[i] → [ j ]B that are created and the constraints on their
relative numbers of inputs and outputs.

The priority and associativity of this five operations are given table 3.1.

Syntax Pri. Assoc. Description
expression ∼ expression 4 left recursive composition
expression , expression 3 right parallel composition
expression : expression 2 right sequential composition
expression <: expression 1 right split composition
expression :> expression 1 right merge composition

Table 3.1: Block-Diagram composition operation priorities

Parallel Composition The parallel composition (A,B) (figure 3.2) is probably the
simplest one. It places the two block-diagrams one on top of the other, without
connections. The inputs of the resulting block-diagram are the inputs of A and B. The
outputs of the resulting block-diagram are the outputs of A and B.

Parallel composition is an associative operation : (A,(B,C)) and ((A,B),C) are equiv-
alents. When no parenthesis are used : A,B,C,D, FAUST uses right associativity and
therefore build internally the expression (A,(B,(C,D))). This organization is im-
portant to know when using pattern matching techniques on parallel compositions.
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10

*

process

Figure 3.2: Example of parallel composition (10,*)

Sequential Composition The sequential composition A:B (figure 3.3) expects:

outputs(A) = inputs(B) (3.1)

It connects each output of A to the corresponding input of B :

A[i]→ [i]B (3.2)

*

/

A

+

B

process

Figure 3.3: Example of sequential composition ((*,/):+)

Sequential composition is an associative operation : (A:(B:C)) and ((A:B):C) are
equivalents. When no parenthesis are used, like in A:B:C:D, FAUST uses right asso-
ciativity and therefore build internally the expression (A:(B:(C:D))).

Split Composition The split composition A<:B (figure 3.4) operator is used to dis-
tribute the outputs of A to the inputs of B .

For the operation to be valid the number of inputs of B must be a multiple of the
number of outputs of A :

outputs(A).k = inputs(B) (3.3)

Each input i of B is connected to the output i mod k of A :

A[i mod k]→ [i]B (3.4)
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10

20

A
+

*

/

B

process

Figure 3.4: example of split composition ((10,20)<: (+,*,/))

Merge Composition The merge composition A:>B (figure 3.5) is the dual of the split
composition. The number of outputs of A must be a multiple of the number of inputs
of B :

outputs(A) = k .inputs(B) (3.5)

Each output i of A is connected to the input i mod k of B :

A[i]→ [i mod k]B (3.6)

The k incoming signals of an input of B are summed together.

10

20

30

40

A

*

B

process

Figure 3.5: example of merge composition ((10,20,30,40):> *)

Recursive Composition The recursive composition A~B (figure 3.6) is used to create
cycles in the block-diagram in order to express recursive computations. It is the most
complex operation in terms of connections.
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To be applicable it requires that :

outputs(A)≥ inputs(B)and inputs(A)≥ outputs(B) (3.7)

Each input of B is connected to the corresponding output of A via an implicit 1-
sample delay :

A[i] Z−1

→ [i]B (3.8)

and each output of B is connected to the corresponding input of A:

B[i]→ [i]A (3.9)

The inputs of the resulting block diagram are the remaining unconnected inputs of
A. The outputs are all the outputs of A.

12345
+

A

1103515245
*

B

process

Figure 3.6: example of recursive composition +(12345)~ *(1103515245)

Iterations

Iterations are analogous to for(...) loops and provide a convenient way to auto-
mate some complex block-diagram constructions.

diagiteration

- par
�� �
- (

���
- ident- ,
���
- numiter- ,

���
- expression- )
���
�

�- seq
�� �
- (

���
- ident- ,
���
- numiter- ,

���
- expression- )
���
�- sum

�� �
- (
���
- ident- ,

���
- numiter- ,
���
- expression- )

���
�- prod
�� �
- (

���
- ident- ,
���
- numiter- ,

���
- expression- )
���


�







-

The following example shows the usage of seq to create a 10-bands filter:
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process = seq(i, 10,

vgroup("band %i",

bandfilter( 1000*(1+i) )

)

);

numiter

- expression -

The number of iterations must be a constant expression.

3.4.2 Numerical Expressions

Numerical expressions are essentially syntactic sugar allowing to use a familiar in-
fix notation to express mathematical expressions, bitwise operations and to compare
signals. Please note that is this section only built-in primitives with an infix syntax
are presented. A complete description of all the build-ins is available in the primitive
section (see 3.5).

numerical

- math�
�- bitwise

�- comparison

�




-

Mathematical expressions

are the familiar 4 operations as well as the modulo and power operations

math

- expression - +
���
�

�- -
���
�- *
���
�- /
���
�- %
���
�- ∧���


�











- expression -



3.4. EXPRESSIONS 23

Bitwise expressions

are the boolean operations and the left and right arithmetic shifts.

bitwise

- expression - |
���
�

�- &
���
�- xor
�� �
�- �
���
�- �
���


�









- expression -

Comparison

operations allow to compare signals and result in a boolean signal that is 1 when the
condition is true and 0 when the condition is false.

comparison

- expression - <
���
�

�- <=
�� �
�- >
���
�- >=
�� �
�- ==
�� �
�- !=
�� �


�











- expression -

3.4.3 Time expressions

Time expressions are used to express delays. The notation X@10 represent the signal X
delayed by 10 samples. The notation X' represent the signal X delayed by one sample
and is therefore equivalent to X@1.

time

- expression- @
���
- expression�

�- expression- '
���


�


-

The delay don’t have to be fixed, but it must be positive and bounded. The values of
a slider are perfectly acceptable as in the following example:
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process = _ @ hslider("delay",0, 0, 100, 1);

3.4.4 Environment expressions

FAUST is a lexically scoped language. The meaning of a FAUST expression is deter-
mined by its context of definition (its lexical environment) and not by its context of
use.

To keep their original meaning, FAUST expressions are bounded to their lexical envi-
ronment in structures called closures. The following constructions allow to explicitly
create and access such environments. Moreover they provide powerful means to reuse
existing code and promote modular design.

envexp

- expression- with
�� �
- {

���
- definition�
�

�


- }
���
�

�- environment
�� �
- {

���
- definition�
�

�


- }
���


�- expression- .
���
- ident

�- library
�� �
- (

���
- filename- )
���
�- component

�� �
- (
���
- filename- )

���
�- expression- [
���
- definition�

�
�


- ]
���


�











-

With

The with construction allows to specify a local environment, a private list of defini-
tion that will be used to evaluate the left hand expression

withexpression

- expression- with
�� �
- {

���
- definition�
�

�


- }
���
-

In the following example :

pink = f : + ~ g with {

f(x) = 0.04957526213389*x
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- 0.06305581334498*x'

+ 0.01483220320740*x'';

g(x) = 1.80116083982126*x

- 0.80257737639225*x';

};

the definitions of f(x) and g(x) are local to f : + ~ g.

Please note that with is left associative and has the lowest priority:

- f : + ~ g with {...} is equivalent to (f : + ~ g) with {...}.

- f : + ~ g with {...} with {...} is equivalent to ((f : + ~ g) with

{...}) with {...}.

Environment

The environment construction allows to create an explicit environment. It is like
a with, but without the left hand expression. It is a convenient way to group to-
gether related definitions, to isolate groups of definitions and to create a name space
hierarchy.

environment

- environment
�� �
- {

���
- definition�
�

�


- }
���
-

In the following example an environment construction is used to group together
some constant definitions :

constant = environment {

pi = 3.14159;

e = 2,718 ;

...

};

The . construction allows to access the definitions of an environment (see next para-
graph).

Access

Definitions inside an environment can be accessed using the ’.’ construction.

access

- expression- .
���
- ident -

For example constant.pi refers to the definition of pi in the above constant envi-
ronment.

Please note that environment don’t have to be named. We could have written directly
environment{pi = 3.14159; e = 2,718;....}.pi
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Library

The library construct allows to create an environment by reading the definitions
from a file.

library

- library
�� �
- (

���
- filename- )
���
-

For example library("filter.lib") represents the environment obtained by read-
ing the file "filter.lib". It works like import("filter.lib") but all the read defini-
tions are stored in a new separate lexical environment. Individual definitions can be
accessed as described in the previous paragraph. For example library("filter.lib
").lowpass denotes the function lowpass as defined in the file "filter.lib".

To avoid name conflicts when importing libraries it is recommended to prefer library
to import. So instead of :

import("filter.lib");

...

... lowpass ....

...

};

the following will ensure an absence of conflicts :

fl = library("filter.lib");

...

...fl.lowpass ....

...

};

Component

The component(...) construction allows to reuse a full FAUST program as a simple
expression.

component

- component
�� �
- (

���
- filename- )
���
-

For example component("freeverb.dsp") denotes the signal processor defined in
file "freeverb.dsp".

Components can be used within expressions like in:

... component("karplus32.dsp"):component("freeverb.dsp")

...

Please note that component("freeverb.dsp") is equivalent to library("freeverb

.dsp").process.
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Explicit substitution

Explicit substitution can be used to customize a component or any expression with a
lexical environment by replacing some of its internal definitions, without having to
modify it.

explicitsubst

- expression- [
���
- definition�

�
�


- ]
���
-

For example we can create a customized version of component("freeverb.dsp"),
with a different definition of foo(x), by writing :

... component("freeverb.dsp")[foo(x) = ...;]...

};

3.4.5 Foreign expressions

Reference to external C functions, variables and constants can be introduced using the
foreign function mechanism.

foreignexp

- ffunction
�� �
- (

���
- signature- ,
���
- includefile- ,

���
- comment- )
���
�

�- fvariable
�� �
- (

���
- type- identifier- ,
���
- includefile- )

���
�- fconstant
�� �
- (

���
- type- identifier- ,
���
- includefile- )

���


�




-

ffunction

An external C function is declared by indicating its name and signature as well as the
required include file. The file "math.lib" of the FAUST distribution contains several
foreign function definitions, for example the inverse hyperbolic sine function asinh:

asinh = ffunction(float asinhf (float), <math.h>, "");

Foreign functions with input parameters are considered pure math functions. They
are therefore considered free of side effects and called only when their parameters
change (that is at the rate of the fastest parameter).

Exceptions are functions with no input parameters. A typical example is the C rand

() function. In this case the compiler generate code to call the function at sample
rate.
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signature

The signature part (float asinhf (float) in our previous example) describes the
prototype of the C function : return type, function name and list of parameter types.

signature

- type- identifier- (
���
- type�

� ,
���
�

�


- )
���
-

types

Note that currently only numerical functions involving simple int and float parame-
ters are allowed. No vectors, tables or data structures can be passed as parameters or
returned.

type

- int
�� �
�

�- float
�� �


�


-

variables and constants

External variables and constants can also be declared with a similar syntax. In the
same "math.lib" file we can found the definition of the sampling rate constant SR
and the definition of the block-size variable BS :

SR = fconstant(int fSamplingFreq , <math.h>);

BS = fvariable(int count , <math.h>);

Foreign constants are not supposed to vary. Therefore expressions involving only
foreign constants are only computed once, during the initialization period.

Variable are considered to vary at block speed. This means that expressions depend-
ing of external variables are computed every block.

include file

In declaring foreign functions one as also to specify the include file. It allows the
FAUST compiler to add the corresponding #include... in the generated code.
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includefile

- <
���
- char�

�
�


- >
���
�

�- "
���
- char�

�
�


- "
���


�


-

3.4.6 Applications and Abstractions

Abstractions and applications are fundamental programming constructions directly
inspired by the Lambda-Calculus. These constructions provide powerful ways to
describe and transform block-diagrams algorithmically.

progexp

- abstraction�
�- application

�


-

Abstractions

Abstractions correspond to functions definitions and allow to generalize a block-
diagram by making variable some of its parts.

abstraction

- lambdaabstraction�
�- patternabstraction

�


-

lambdaabstraction

- \
���
- (

���
- ident�
� ,

���
�
�


- )
���
- .

���
- (
���
- expression- )

���
-

Let’s say you want to transform a stereo reverb, freeverb for instance, into a mono
effect. You can write the following expression:

_ <: freeverb :> _

The incoming mono signal is splitted to feed the two input channels of the reverb,
while the two output channels of the reverb are mixed together to produce the result-
ing mono output.

Imagine now that you are interested in transforming other stereo effects. It can be
interesting to generalize this principle by making freeverb a variable:
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\( freeverb).(_ <: freeverb :> _)

The resulting abstraction can then be applied to transform other effects. Note that if
freeverb is a perfectly valid variable name, a more neutral name would probably be
easier to read like:

\(fx).(_ <: fx :> _)

Moreover it could be convenient to give a name to this abstraction:

mono = \(fx).(_ <: fx :> _);

Or even use a more traditional, but equivalent, notation:

mono(fx) = _ <: fx :> _;

Applications

Applications correspond to function calls and allow to replace the variable parts of
an abstraction with the specified arguments.

application

- expression- (
���
- expression�

� ,
���
�

�


- )
���
-

For example you can apply the previous abstraction to transform your stereo harmo-
nizer:

mono(harmonizer)

The compiler will start by replacing mono by its definition:

\(fx).(_ <: fx :> _)(harmonizer)

Whenever the FAUST compiler find an application of an abstraction it replaces the
Replacing the variable

part with the argument is
called β-reduction in

Lambda-Calculus

variable part with the argument. The resulting expression is as expected:

(_ <: harmonizer :> _)

Pattern Matching

Pattern matching rules provide an effective way to analyze and transform block-
diagrams algorithmically.

patternabstraction

- case
�� �
- {

���
- rule�
�

�


- }
���
-
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Rule

- (
���
- pattern�

� ,
���
�

�


- )
���
- =>

�� �
- expression- ;
���
-

Pattern

- ident�
�- expression

�


-

For example case{ (x:y)=> y:x; (x)=> x; } contains two rules. The first one
will match a sequential expression and invert the two part. The second one will
match all remaining expressions and leave it untouched. Therefore the application:

case{(x:y) => y:x; (x) => x;}( freeverb:harmonizer)

will produce:

(harmonizer:freeverb)

Please note that patterns are evaluated before the pattern matching operation. There-
fore only variables that appear free in the pattern are binding variables during pattern
matching.

3.5 Primitives

The primitive signal processing operations represent the built-in functionalities of
FAUST, that is the atomic operations on signals provided by the language. All these
primitives denote signal processors, functions transforming input signals into output
signals.

3.5.1 Numbers

FAUST considers two types of numbers : integers and floats. Integers are implemented
as 32-bits integers, and floats are implemented either with a simple, double or ex-
tended precision depending of the compiler options. Floats are available in decimal
or scientific notation.

int

�
�- +

���
�- -
���


�




- digit�
�

�


-
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float

�
�- +

���
�- -
���


�





- digit�
�

�


- .
���
�

�- digit�
�

�



�



�

��
�- digit�

�
�



�


- .
���
- digit�

�
�



�




�
�- exponent

�


-

exponent

- e
���
�

�- +
���
�- -
���


�




- digit�
�

�


-

digit

- 0�9
�� �
-

Like any other FAUST expression, numbers are signal processors. For example the
number 0.95 is a signal processor of type S0→ S1 that transforms an empty tuple of
signals () into a 1-tuple of signals (y) such that ∀t ∈N, y(t ) = 0.95.

3.5.2 C-equivalent primitives

Most FAUST primitives are analogue to their C counterpart but lifted to signal pro-
cessing. For example + is a function of type S2→ S1 that transforms a pair of signals
(x1, x2) into a 1-tuple of signals (y) such that ∀t ∈N, y(t ) = x1(t )+ x2(t ).
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Syntax Type Description
n S0→ S1 integer number: y(t ) = n
n.m S0→ S1 floating point number: y(t ) = n.m
_ S1→ S1 identity function: y(t ) = x(t )
! S1→ S0 cut function: ∀x ∈ S, (x)→ ()
int S1→ S1 cast into an int signal: y(t ) = (i nt )x(t )
float S1→ S1 cast into an float signal: y(t ) = ( f l oat )x(t )
+ S2→ S1 addition: y(t ) = x1(t )+ x2(t )
- S2→ S1 subtraction: y(t ) = x1(t )− x2(t )
* S2→ S1 multiplication: y(t ) = x1(t ) ∗ x2(t )
∧ S2→ S1 power: y(t ) = x1(t )

x2(t )

/ S2→ S1 division: y(t ) = x1(t )/x2(t )
% S2→ S1 modulo: y(t ) = x1(t )%x2(t )
& S2→ S1 logical AND: y(t ) = x1(t )&x2(t )
| S2→ S1 logical OR: y(t ) = x1(t )|x2(t )
xor S2→ S1 logical XOR: y(t ) = x1(t )∧ x2(t )
� S2→ S1 arith. shift left: y(t ) = x1(t )<< x2(t )
� S2→ S1 arith. shift right: y(t ) = x1(t )>> x2(t )
< S2→ S1 less than: y(t ) = x1(t )< x2(t )
<= S2→ S1 less or equal: y(t ) = x1(t )<= x2(t )
> S2→ S1 greater than: y(t ) = x1(t )> x2(t )
>= S2→ S1 greater or equal: y(t ) = x1(t )>= x2(t )
== S2→ S1 equal: y(t ) = x1(t ) == x2(t )
!= S2→ S1 different: y(t ) = x1(t )!= x2(t )

3.5.3 math.h-equivalent primitives

Most of the C math.h functions are also built-in as primitives (the others are defined
as external functions in file math.lib).
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Syntax Type Description
acos S1→ S1 arc cosine: y(t ) = acosf(x(t ))
asin S1→ S1 arc sine: y(t ) = asinf(x(t ))
atan S1→ S1 arc tangent: y(t ) = atanf(x(t ))
atan2 S2→ S1 arc tangent of 2 signals: y(t ) = atan2f(x1(t ), x2(t ))
cos S1→ S1 cosine: y(t ) = cosf(x(t ))
sin S1→ S1 sine: y(t ) = sinf(x(t ))
tan S1→ S1 tangent: y(t ) = tanf(x(t ))
exp S1→ S1 base-e exponential: y(t ) = expf(x(t ))
log S1→ S1 base-e logarithm: y(t ) = logf(x(t ))
log10 S1→ S1 base-10 logarithm: y(t ) = log10f(x(t ))
pow S2→ S1 power: y(t ) = powf(x1(t ), x2(t ))
sqrt S1→ S1 square root: y(t ) = sqrtf(x(t ))
abs S1→ S1 absolute value (int): y(t ) = abs(x(t ))

absolute value (float): y(t ) = fabsf(x(t ))
min S2→ S1 minimum: y(t ) =min(x1(t ), x2(t ))
max S2→ S1 maximum: y(t ) =max(x1(t ), x2(t ))
fmod S2→ S1 float modulo: y(t ) = fmodf(x1(t ), x2(t ))
remainder S2→ S1 float remainder: y(t ) = remainderf(x1(t ), x2(t ))
floor S1→ S1 largest int ≤: y(t ) = floorf(x(t ))
ceil S1→ S1 smallest int ≥: y(t ) = ceilf(x(t ))
rint S1→ S1 closest int: y(t ) = rintf(x(t ))

3.5.4 Delay, Table, Selector primitives

The following primitives allow to define fixed delays, read-only and read-write tables
and 2 or 3-ways selectors (see figure 3.7).

Syntax Type Description
mem S1→ S1 1-sample delay: y(t + 1) = x(t ), y(0) = 0
prefix S2→ S1 1-sample delay: y(t + 1) = x2(t ), y(0) = x1(0)
@ S2→ S1 fixed delay: y(t + x2(t )) = x1(t ), y(t < x2(t )) = 0
rdtable S3→ S1 read-only table: y(t ) = T [r (t )]
rwtable S5→ S1 read-write table: T [w(t )] = c(t ); y(t ) = T [r (t )]
select2 S3→ S1 select between 2 signals: T [] = {x0(t ), x1(t )}; y(t ) = T [s(t )]
select3 S4→ S1 select between 3 signals: T [] = {x0(t ), x1(t ), x2(t )}; y(t ) = T [s(t )]

3.5.5 User Interface Elements

FAUST user interface widgets allow an abstract description of the user interface from
within the FAUST code. This description is independent of any GUI toolkits. It
is based on buttons, checkboxes, sliders, etc. that are grouped together vertically and
horizontally using appropriate grouping schemes.

All these GUI elements produce signals. A button for example (see figure 3.8) pro-
duces a signal which is 1 when the button is pressed and 0 otherwise. These signals
can be freely combined with other audio signals.
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prefix

prefix  (1­sample delay)

a

b
y

y(0)=a(0) 
y(t)=b(t­1)

@

@ (n­samples delay)

a

b
y

t < b(0) : y(t)=0 
t >=b(0) : y(t)=a(t­b(0))

mem

mem (1­sample delay)

a y

y(0)=0 
y(t)=a(t­1)

s rdtable

rdtable  (readonly table)

n

r

y

y(t) = T(t,r(t)) 
T(t,i) = s(i)

s

rwtable  (readwrite table)

n

w y

y(t) = T(t,r(t)) 
T(0,i) = c(0) (i == w(0))
T(0,i) = s(i) (i != w(0))
T(t,i) = c(t) (i == w(t))
T(t,i) = T(t­1,i) (i != w(t))
 

c

r

rwtable

a[0] select2

select2  (two­ways selector)

s

a[1]

y

y(t) = a[s(t)](t)

a[0]

select3  (three­ways selector)

s

a[1]
y

a[2]

select3

y(t) = a[s(t)](t)

Figure 3.7: Delays, tables and selectors primitives
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Figure 3.8: User Interface Button

Syntax Example
button(str) button("play")

checkbox(str) checkbox("mute")

vslider(str,cur,min,max,step) vslider("vol",50,0,100,1)

hslider(str,cur,min,max,step) hslider("vol",0.5,0,1,0.01)

nentry(str,cur,min,max,step) nentry("freq",440,0,8000,1)

vgroup(str,block-diagram) vgroup("reverb", ...)

hgroup(str,block-diagram) hgroup("mixer", ...)

tgroup(str,block-diagram) vgroup("parametric", ...)

vbargraph(str,min,max) vbargraph("input",0,100)

hbargraph(str,min,max) hbargraph("signal",0,1.0)

attach attach(x, vumeter(x))

Labels

Every user interface widget has a label (a string) that identifies it and informs the user
of its purpose. There are three important mechanisms associated with labels (and
coded inside the string): variable parts, pathnames and metadata.

Variable parts. Labels can contain variable parts. These variable parts are indicated
by the sign ’%’ followed by the name of a variable. During compilation each label is
processed in order to replace the variable parts by the value of the variable. For
example par(i,8,hslider("Voice %i", 0.9, 0, 1, 0.01)) creates 8 different
sliders in parallel :

hslider("Voice 0", 0.9, 0, 1, 0.01) ,

hslider("Voice 1", 0.9, 0, 1, 0.01) ,

...

hslider("Voice 7", 0.9, 0, 1, 0.01).

while par(i,8,hslider("Voice", 0.9, 0, 1, 0.01)) would have created only
one slider and duplicated its output 8 times.

The variable part can have an optional format digit. For example "Voice %2i"

would indicate to use two digit when inserting the value of i in the string.

An escape mechanism is provided. If the sign % is followed by itself, it will be included
in the resulting string. For example "feedback (%%)" will result in "feedback (%)

".
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Pathnames. Thanks to horizontal, vertical and tabs groups, user interfaces have a
hierarchical structure analog to a hierarchical file system. Each widget has an asso-
ciated pathname obtained by concatenating the labels of all its surrounding groups
with its own label.

In the following example :

hgroup("Foo",

...

vgroup("Faa",

...

hslider("volume" ,...)

...

)

...

)

the volume slider has pathname /h:Foo/v:Faa/volume.

In order to give more flexibility to the design of user interfaces, it is possible to ex-
plicitly specify the absolute or relative pathname of a widget directly in its label.

In our previous example the pathname of :

hslider("../ volume" ,...)

would have been "/h:Foo/volume", while the pathname of :

hslider("t:Fii/volume" ,...)

would have been : "/h:Foo/v:Faa/t:Fii/volume".

The grammar for labels with pathnames is the following:

label

- path- name -

path

�
�- /

���

�



�
�- folder- /

���
�
�

�



�


-

folder

- ..
�� �
�

�- h:
�� �
�

�- v:
�� �
�- t:
�� �


�




- name

�


-
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Metadata Widget labels can contain metadata enclosed in square brackets. These
metadata associate a key with a value and are used to provide additional information
to the architecture file. They are typically used to improve the look and feel of the
user interface. The FAUST code :

process = *( hslider("foo [key1: val 1][ key2: val 2]",

0, 0, 1, 0.1));

will produce and the corresponding C++ code :

class mydsp : public dsp {

...

virtual void buildUserInterface(UI* interface) {

interface ->openVerticalBox("m");

interface ->declare (&fslider0 , "key1", "val 1");

interface ->declare (&fslider0 , "key2", "val 2");

interface ->addHorizontalSlider("foo", &fslider0 ,

0.0f, 0.0f, 1.0f, 0.1f);

interface ->closeBox ();

}

...

};

All the metadata are removed from the label by the compiler and transformed in calls
to the UI::declare() method. All these UI::declare() calls will always take place
before the UI::AddSomething() call that creates the User Interface element. This
allows the UI::AddSomething() method to make full use of the available metadata.

It is the role of the architecture file to decide what to do with these metadata. The
jack-qt.cpp architecture file for example implements the following :

1. "...[style:knob]..." creates a rotating knob instead of a regular slider or
nentry.

2. "...[style:led]..." in a bargraph’s label creates a small LED instead of a
full bargraph

3. "...[unit:dB]..." in a bargraph’s label creates a more realistic bargraph
with colors ranging from green to red depending of the level of the value

4. "...[unit:xx]..." in a widget postfixes the value displayed with xx

5. "...[tooltip:bla bla]..." add a tooltip to the widget

6. "...[osc:/address min max]..." Open Sound Control message alias

Moreover starting a label with a number option like in "[1]..." provides a conve-
nient means to control the alphabetical order of the widgets.

Attach

The attach primitive takes two input signals and produce one output signal which
is a copy of the first input. The role of attach is to force its second input signal to
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be compiled with the first one. From a mathematical point of view attach(x,y) is
equivalent to 1*x+0*y, which is in turn equivalent to x, but it tells the compiler not
to optimize-out y.

To illustrate this role let say that we want to develop a mixer application with a
vumeter for each input signals. Such vumeters can be easily coded in FAUST using an
envelop detector connected to a bargraph. The problem is that these envelop signals
have no role in the output signals. Using attach(x,vumeter(x)) one can tel the
compiler that when x is compiled vumeter(x) should also be compiled.
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Chapter 4

Invoking the FAUST
compiler

The FAUST compiler is invoked using the faust command. It translate FAUST pro-
grams into C++ code. The generated code can be wrapped into an optional architec-
ture file allowing to directly produce a fully operational program.

compiler

- faust
�� �
- options - file�

�
�


-

For example faust noise.dsp will compile noise.dsp and output the correspond-
ing C++ code on the standard output. The option -o allows to choose the output
file : faust noise.dsp -o noise.cpp. The option -a allows to choose the archi-
tecture file : faust -a alsa-gtk.cpp noise.dsp.

To compile a FAUST program into an ALSA application on Linux you can use the
following commands:

faust -a alsa -gtk.cpp noise.dsp -o noise.cpp

g++ -lpthread -lasound

`pkg -config --cflags --libs gtk+-2.0`

noise.cpp -o noise

4.1 Compilation options

Compilation options are listed in the following table :
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Short Long Description
-h �help print the help message
-v �version print version information
-d �details print compilation details
-tg �task-graph draw a graph of all internal computa-

tion loops as a .dot (graphviz) file.
-sg �signal-graph draw a graph of all internal signal ex-

pressions as a .dot (graphviz) file.
-ps �postscript generate block-diagram postscript files
-svg �svg generate block-diagram svg files
-blur �shadow-blur add a blur to boxes shadows
-sd �simplify-diagrams simplify block-diagram before drawing

them
-f n �fold n max complexity of svg diagrams before

splitting into several files (default 25
boxes)

-mns n �max-name-size n max character size used in svg diagram
labels

-sn �simple-names use simple names (without arguments)
for block-diagram (default max size : 40
chars)

-xml �xml generate an additional description file
in xml format

-uim �user-interface-macros add user interface macro definitions to
the C++ code

-flist �file-list list all the source files and libraries im-
plied in a compilation

-norm �normalized-form prints the internal signals in normal-
ized form and exits

-lb �left-balanced generate left-balanced expressions
-mb �mid-balanced generate mid-balanced expressions (de-

fault)
-rb �right-balanced generate right-balanced expressions
-lt �less-temporaries generate less temporaries in compiling

delays
-mcd n �max-copy-delay n threshold between copy and ring

buffer delays (default 16 samples)
-vec �vectorize generate easier to vectorize code
-vs n �vec-size n size of the vector (default 32 samples)

when -vec
-lv n �loop-variant n loop variant [0:fastest (default), 1:sim-

ple] when -vec
-dfs �deepFirstScheduling schedule vector loops in deep first or-

der when -vec
-omp �openMP generate parallel code using OpenMP

(implies -vec)
continued on next page
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Short Long Description
-sch �scheduler generate parallel code using threads di-

rectly (implies -vec)
-g �groupTasks group sequential tasks together when -

omp or -sch is used
-single �single-precision-floats use floats for internal computations

(default)
-double �double-precision-floats use doubles for internal computations
-quad �quad-precision-floats use extended for internal computations
-mdoc �mathdoc generates the full mathematical de-

scription of a FAUST program
-mdlang l �mathdoc-lang l choose the language of the mathemati-

cal description (l = en, fr, ...)
-stripmdoc �strip-mdoc-tags remove documentation tags when

printing FAUST listings
-cn name �class-name name name of the dsp class to be used instead

of ’mydsp’
-t time �timeout time time out of time seconds (default 600)

for the compiler to abort
-a file architecture file to use
-o file C++ output file
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Chapter 5

Architecture files

A FAUST program describes a signal processor, a pure computation that maps input
signals to output signals. It says nothing about audio drivers or GUI toolkits. This
missing information is provided by architecture files.

An architecture file describes how to relate a FAUST program to the external world, in
particular the audio drivers and the user interface to be used. This approach allows
a single FAUST program to be easily deployed to a large variety of audio standards
(Max/MSP externals, PD externals, VST plugins, CoreAudio applications, Jack ap-
plications, iPhone, etc.).

The architecture to be used is specified at compile time with the -a options. For
example faust -a jack-gtk.cpp foo.dsp indicates to use the Jack GTK architec-
ture when compiling foo.dsp.

The main available architecture files are listed table 5.1. Since FAUST 0.9.40 some
of these architectures are a modular combination of an audio module and one or
more user interface modules. Among these user interface modules OSCUI provide
supports for Open Sound Control allowing FAUST programs to be controlled by
OSC messages.

5.1 Audio architecture modules

An audio architecture module typically connects a FAUST program to the audio drivers.
It is responsible for allocating and releasing the audio channels and for calling the
FAUST dsp::compute method to handle incoming audio buffers and/or to produce
audio output. It is also responsible for presenting the audio as non-interleaved float
data, normalized between -1.0 and 1.0.

A FAUST audio architecture module derives an audio class defined as below:

class audio {

public:

audio() {}

virtual ~audio() {}

virtual bool init(const char*, dsp*) = 0;

virtual bool start() = 0;

virtual void stop() = 0;
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File name Description
alchemy-as.cpp Flash - ActionScript plugin
ca-qt.cpp CoreAudio QT4 standalone application
jack-gtk.cpp Jack GTK standalone application
jack-qt.cpp Jack QT4 standalone application
jack-console.cpp Jack command line application
jack-internal.cpp Jack server plugin
alsa-gtk.cpp ALSA GTK standalone application
alsa-qt.cpp ALSA QT4 standalone application
oss-gtk.cpp OSS GTK standalone application
pa-gtk.cpp PortAudio GTK standalone application
pa-qt.cpp PortAudio QT4 standalone application
max-msp.cpp Max/MSP external
vst.cpp VST plugin
vst2p4.cpp VST 2.4 plugin
vsti-mono.cpp VSTi mono instrument
ladspa.cpp LADSPA plugin
q.cpp Q language plugin
supercollider.cpp SuperCollider Unit Generator
snd-rt-gtk.cpp Snd-RT music programming language
csound.cpp CSOUND opcode
puredata.cpp PD external
sndfile.cpp sound file transformation command
bench.cpp speed benchmark
octave.cpp Octave plugin
plot.cpp Command line application
sndfile.cpp Command line application

Table 5.1: Available architectures.
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};

The API is simple enough to give a great flexibility to audio architectures imple-
mentations. The init method should initialize the audio. At init exit, the system
should be in a safe state to recall the dsp object state.

Table 5.2 gives the audio architectures currently available for various operating sys-
tems.

Audio system Operating system
Alsa Linux

Core audio Mac OS X, iOS
Jack Linux, Mac OS X, Windows

Portaudio Linux, Mac OS X, Windows
OSC (see 5.3.3) Linux, Mac OS X, Windows

VST Mac OS X, Windows
Max/MSP Mac OS X, Windows
CSound Linux, Mac OS X, Windows

SuperCollider Linux, Mac OS X, Windows
PureData Linux, Mac OS X, Windows
Pure [?] Linux, Mac OS X, Windows

Table 5.2: FAUST audio architectures.

5.2 UI architecture modules

A UI architecture module links user actions (via graphic widgets, command line pa-
rameters, OSC messages, etc.) with the FAUST program to control. It is responsible
for associating program parameters to user interface elements and to update param-
eter’s values according to user actions. This association is triggered by the dsp::

buildUserInterface call, where the dsp asks a UI object to build the DSP module
controllers.

Since the interface is basically graphic oriented, the main concepts are widget based:
a UI architecture module is semantically oriented to handle active widgets, passive
widgets and widgets layout.

A FAUST UI architecture module derives an UI class (Figure 5.1).

5.2.1 Active widgets

Active widgets are graphical elements that control a parameter value. They are
initialized with the widget name and a pointer to the linked value. The widget
currently considered are Button, ToggleButton, CheckButton, VerticalSlider,
HorizontalSlider and NumEntry.
A GUI architecture must implement a method
addXxx (const char* name, float* zone, ...) for each active widget. Addi-
tional parameters are available for Slider and NumEntry: the init value, the min

and max values and the step.
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class UI

{

public:

UI() {}

virtual ~UI() {}

-- active widgets

virtual void addButton(const char* l, float* z) = 0;

virtual void addToggleButton(const char* l, float* z) = 0;

virtual void addCheckButton(const char* l, float* z) = 0;

virtual void addVerticalSlider(const char* l, float* z,

float init , float min , float max , float step) = 0;

virtual void addHorizontalSlider(const char* l, float* z,

float init , float min , float max , float step) = 0;

virtual void addNumEntry(const char* l, float* z,

float init , float min , float max , float step) = 0;

-- passive widgets

virtual void addNumDisplay(const char* l, float* z,

int p) = 0;

virtual void addTextDisplay(const char* l, float* z,

const char* names[], float min , float max) = 0;

virtual void addHorizontalBargraph(const char* l,

float* z, float min , float max) = 0;

virtual void addVerticalBargraph(const char* l,

float* z, float min , float max) = 0;

-- widget layouts

virtual void openTabBox(const char* l) = 0;

virtual void openHorizontalBox(const char* l) = 0;

virtual void openVerticalBox(const char* l) = 0;

virtual void closeBox () = 0;

-- metadata declarations

virtual void declare(float*, const char*, const char* ) {}

};

Figure 5.1: UI, the root user interface class.
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5.2.2 Passive widgets

Passive widgets are graphical elements that reflect values. Similarly to active widgets,
they are initialized with the widget name and a pointer to the linked value. The wid-
get currently considered are NumDisplay, TextDisplay, HorizontalBarGraph and
VerticalBarGraph.
A UI architecture must implement a method
addxxx (const char* name, float* zone, ...) for each passive widget. Addi-
tional parameters are available, depending on the passive widget type.

5.2.3 Widgets layout

Generally, a GUI is hierarchically organized into boxes and/or tab boxes. A UI ar-
chitecture must support the following methods to setup this hierarchy :
openTabBox (const char* label)

openHorizontalBox (const char* label)

openVerticalBox (const char* label)

closeBox (const char* label)

Note that all the widgets are added to the current box.

5.2.4 Metadata

The FAUST language allows widget labels to contain metadata enclosed in square
brackets. These metadata are handled at GUI level by a declare method taking as
argument, a pointer to the widget associated zone, the metadata key and value:
declare(float* zone, const char* key, const char* value)

UI Comment
console a textual command line UI
GTK a GTK-based GUI
Qt a multi-platform Qt-based GUI

FUI a file-based UI to store and recall modules states
OSC OSC control (see 5.3.1)

Table 5.3: Available UI architectures.

5.3 OSC architecture modules

The OSC [?] support opens FAUST application’s control to any OSC capable appli-
cation or programming language. It also transforms a full range of devices embedding
sensors (wiimote, smart phones, ...) into physical interfaces for FAUST application’s
control, allowing a direct use like musical instruments.

The FAUST OSC architecture is twofold: it is declined as a UI architecture and also
as an audio architecture, proposing a new and original way to make digital signal
computation.
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5.3.1 OSC GUI architecture module

The OSC UI architecture transforms each UI active widget addition into an addnode

call, ignores the passive widgets and transforms container calls (openXxxBox, closeBox

) into opengroup and closegroup calls.

OSC address space and messages

The OSC address space adheres strictly to the hierarchy defined by the addnode and
opengroup, closegroup calls. It supports the OSC pattern matching mechanism
as described in [?].

A node expects to receive OSC messages with a single float value as parameter. This
policy is strict for the parameters count, but relaxed for the parameter type: OSC int
values are accepted and casted to float.

Audio system Environment OSC support
Linux

Alsa GTK, Qt yes
Jack GTK, Qt, Console yes

PortAudio GTK, Qt yes
Mac OS X

CoreAudio Qt yes
Jack Qt, Console yes

PortAudio Qt yes
Windows

Jack Qt, Console yes
PortAudio Qt yes

iOS (iPhone)
CoreAudio Cocoa not yet

Table 5.4: OSC support in FAUST application’s architectures.

Two additional messages are defined to provide FAUST applications discovery and
address space discoveries:

• the hello message: accepted by any module root address. The module re-
sponds with its root address, followed by its IP address and the UDP port
numbers (listening port, output port, error port). See the network manage-
ment section below for ports numbering scheme.

• the get message: accepted by any valid OSC address. The get message is prop-
agated to every terminal node that responds with its OSC address and current
values (value, min and max).

Example:
Consider the noise module provided with the FAUST examples:

• it sends /noise 192.168.0.1 5510 5511 5512

in answer to a hello message,
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• it sends /noise/Volume 0.8 0. 1.

in answer to a get message.

Network management.

The OSC module makes use of three different UDP port numbers:

• 5510 is the listening port number: control messages should be addressed to this
port.

• 5511 is the output port number: answers to query messages are sent to this
port.

• 5512 is the error port number: used for asynchronous error notifications.

When the UDP listening port number is busy (for instance in case of multiple FAUST
programs running), the system automatically looks for the next available port num-
ber. Unless otherwise specified by the command line, the UDP output port numbers
are unchanged.

A program sends its name (actually its root address) and allocated port numbers on
the OSC output port on startup.

Port numbers can be changed on the command line with the following options:
[-port | -outport | -errport] number

The default UDP output streams destination is localhost. It can also be changed
with the command line option

-dest address where address is a host name or an IP number.

5.3.2 OSC message aliases

Alias is a metadata-based mechanism allowing to map arbitrary incoming OSC mes-
sages to program parameters. Some remote controllers, like TouchOSC on Android,
can only transmit predefined messages, for example /1/push1 1.000000 when push
button 1 is pressed, /accxyz -0.421380 0.268151 9.232041 for the x, y and z
accelerometers, /1/fader1 0.563994 when fader 1 is moved, etc.

Such messages can be used to control a specific program parameter by inserting an
OSC metadata [osc:/path/name] in its label. For example vslider("Volume",

0, 0, 1, 0.1) can be controlled by TouchOSC fader 1 by indicating its OSC ad-
dress : vslider("Volume[osc:/1/fader1]", 0, 0, 1, 0.1) (see table 5.5 for a
more complete list of aliases).

By default the incoming value range is assumed to be between 0 and 1. But it is pos-
sible to indicate a different range : [osc:/path/name min max]. When incoming
messages provide more than one value it is possible to select the right one with an
additional suffix (numbered starting form 0) to the pathname. For instance vslider
("Volume[osc:/accxyz/1 -10 10]", 0, 0, 1, 0.1)would allow to control the
volume using the y accelerometer. Moreover the accelerometer’s values are mapped
from range [−10..10] to range [0..1].
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alias description
[osc:/1/rotary1] top left rotary knob
[osc:/1/rotary2] middle left rotary knob
[osc:/1/rotary3] bottom left rotary knob
[osc:/1/push1] bottom left push button
[osc:/1/push2] bottom center left push button
[osc:/1/toggle1] top center left toggle button
[osc:/1/toggle2] middle center left toggle button
[osc:/1/fader1] center left vertical fader
[osc:/1/toggle3] top center right toggle button
[osc:/1/toggle4] middle center right toggle button
[osc:/1/fader2] center right vertical toggle button
[osc:/1/rotary4] top right rotary knob
[osc:/1/rotary5] middle right rotary knob
[osc:/1/rotary6] bottom right rotary knob
[osc:/1/push3] bottom center right push button
[osc:/1/push4] bottom right push button
[osc:/1/fader3] bottom horizontal fader
[osc:/accxyz/0 -10 10] x accelerometer
[osc:/accxyz/1 -10 10] y accelerometer
[osc:/accxyz/2 -10 10] z accelerometer

Table 5.5: Examples of OSC message aliases for TouchOSC (layout Mix2). Since
most of these messages produce values in the default range [0..1] , there is no need to
indicate this range. Accelerometers producing values in a different range, this range
[−10..10] has to be indicated.
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5.3.3 OSC audio architecture

The OSC audio architecture implements an audio architecture where audio inputs
and outputs are replaced by OSC messages. Using this architecture, a FAUST module
accepts arbitrary data streams on its root OSC address, and handles this input stream
as interleaved signals. Thus, each incoming OSC packet addressed to a module root
triggers a computation loop, where as many values as the number of incoming frames
are computed.

The output of the signal computation is sent to the OSC output port as non-interleaved
data to the OSC addresses /root/n where root is the module root address and n is
the output number (indexed from 0).

For example:
consider a FAUST program named split and defined by:

process = _ <: _,_

the message
/split 0.3

will produce the 2 following messages as output:
/split/0 0.3

/split/1 0.3

The OSC audio architecture provides a very convenient way to execute a signal pro-
cessing at an arbitrary rate, even allowing to make step by step computation. Con-
necting the output OSC signals to Max/MSP or to a system like INScore1[?], pro-
vides a close examination of the computation results.

1http://inscore.sf.net

http://inscore.sf.net
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Chapter 6

Controlling the code
generation

Several options of the FAUST compiler allow to control the generated C++ code.
By default the computations are done sample by sample in a single loop. But the
compiler can also generate vector and parallel code.

6.1 Vector Code generation

Modern C++ compilers are able to do autovectorization, that is to use SIMD in-
structions to speedup the code. These instructions can typically operate in parallel
on short vectors of 4 simple precision floating point numbers thus leading to a the-
oretical speedup of ×4. Autovectorization of C/C++ programs is a difficult task.
Current compilers are very sensitive to the way the code is arranged. In particular
too complex loops can prevent autovectorization. The goal of the vector code gen-
eration is to rearrange the C++ code in a way that facilitates the autovectorization
job of the C++ compiler. Instead of generating a single sample computation loop, it
splits the computation into several simpler loops that communicates by vectors.

The vector code generation is activated by passing the --vectorize (or -vec) option
to the FAUST compiler. Two additional options are available: --vec-size <n> con-
trols the size of the vector (by default 32 samples) and --loop-variant 0/1 gives
some additional control on the loops.

To illustrate the difference between scalar code and vector code, let’s take the compu-
tation of the RMS (Root Mean Square) value of a signal. Here is the FAUST code that
computes the Root Mean Square of a sliding window of 1000 samples:

// Root Mean Square of n consecutive samples

RMS(n) = square : mean(n) : sqrt ;

// Square of a signal

square(x) = x * x ;

55
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// Mean of n consecutive samples of a signal

// (uses fixpoint to avoid the accumulation of

// rounding errors)

mean(n) = float2fix : integrate(n) :

fix2float : /(n);

// Sliding sum of n consecutive samples

integrate(n,x) = x - x@n : +~_ ;

// Convertion between float and fix point

float2fix(x) = int(x*(1<<20));

fix2float(x) = float(x)/(1<<20);

// Root Mean Square of 1000 consecutive samples

process = RMS (1000) ;

The compute() method generated in scalar mode is the following:

virtual void compute (int count ,

float** input ,

float** output)

{

float* input0 = input [0];

float* output0 = output [0];

for (int i=0; i<count; i++) {

float fTemp0 = input0[i];

int iTemp1 = int (1048576* fTemp0*fTemp0);

iVec0[IOTA &1023] = iTemp1;

iRec0 [0] = (( iVec0[IOTA &1023] + iRec0 [1])

- iVec0 [(IOTA -1000) &1023]);

output0[i] = sqrtf (9.536744e-10f *

float(iRec0 [0]));

// post processing

iRec0 [1] = iRec0 [0];

IOTA = IOTA +1;

}

}

The -vec option leads to the following reorganization of the code:

virtual void compute (int fullcount ,

float** input ,

float** output)

{

int iRec0_tmp [32+4];

int* iRec0 = &iRec0_tmp [4];

for (int index =0; index <fullcount; index +=32)

{

int count = min (32, fullcount -index);

float* input0 = &input [0][ index ];

float* output0 = &output [0][ index ];
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for (int i=0; i<4; i++)

iRec0_tmp[i]= iRec0_perm[i];

// SECTION : 1

for (int i=0; i<count; i++) {

iYec0[( iYec0_idx+i)&2047] =

int (1048576* input0[i]* input0[i]);

}

// SECTION : 2

for (int i=0; i<count; i++) {

iRec0[i] = ((iYec0[i] + iRec0[i-1]) -

iYec0[( iYec0_idx+i -1000) &2047]);

}

// SECTION : 3

for (int i=0; i<count; i++) {

output0[i] = sqrtf ((9.536744e-10f *

float(iRec0[i])));

}

// SECTION : 4

iYec0_idx = (iYec0_idx+count)&2047;

for (int i=0; i<4; i++)

iRec0_perm[i]= iRec0_tmp[count+i];

}

}

While the second version of the code is more complex, it turns out to be much eas-
ier to vectorize efficiently by the C++ compiler. Using Intel icc 11.0, with the exact
same compilation options: -O3 -xHost -ftz -fno-alias -fp-model fast=2, the
scalar version leads to a throughput performance of 129.144 MB/s, while the vector
version achieves 359.548 MB/s, a speedup of x2.8 !

The vector code generation is built on top of the scalar code generation (see figure
6.1). Every time an expression needs to be compiled, the compiler checks if it requires
a separate loop or not. It applies some simple rules for that. Expressions that are
shared (and are complex enough) are good candidates to be compiled in a separate
loop, as well as recursive expressions and expressions used in delay lines.

The result is a directed graph in which each node is a computation loop (see Figure
6.2). This graph is stored in the klass object and a topological sort is applied to it
before printing the code.

6.2 Parallel Code generation

The parallel code generation is activated by passing either the --openMP (or -omp

) option or the --scheduler (or -sch) option. It implies the -vec options as the
parallel code generation is built on top of the vector code generation.

6.2.1 The OpenMP code generator

The --openMP (or -omp) option given to the FAUST compiler will insert appropri-
ate OpenMP directives in the C++ code. OpenMP (http://wwww.openmp.org) is
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scalar code generator

vector code generator
(loop separation)

parallel code generator
(OpenMP directives)

Figure 6.1: FAUST’s stack of code generators

a well established API that is used to explicitly define direct multi-threaded, shared
memory parallelism. It is based on a fork-join model of parallelism (see figure 6.3).
Parallel regions are delimited by #pragma omp parallel constructs. At the en-
trance of a parallel region a team of parallel threads is activated. The code within
a parallel region is executed by each thread of the parallel team until the end of the
region.

#pragma omp parallel

{

// the code here is executed simultaneously by

// every thread of the parallel team

...

}

In order not to have every thread doing redundantly the exact same work, OpemMP
provides specific work-sharing directives. For example #pragma omp sections al-
lows to break the work into separate, discrete sections, each section being executed
by one thread:

#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

{

// job 1

}

#pragma omp section

{



6.2. PARALLEL CODE GENERATION 59

L1

L4

L7

L8

L6

L2

L9

L3

L5

Figure 6.2: The result of the -vec option is a directed acyclic graph (DAG) of small
computation loops

// job 2

}

...

}

...

}

6.2.2 Adding OpenMP directives

As said before the parallel code generation is built on top of the vector code gener-
ation. The graph of loops produced by the vector code generator is topologically
sorted in order to detect the loops that can be computed in parallel. The first set S0
(loops L1, L2 and L3 in the DAG of Figure 6.2) contains the loops that don’t depend
on any other loops, the set S1 contains the loops that only depend on loops of S0,
(that is loops L4 and L5), etc..

As all the loops of a given set Sn can be computed in parallel, the compiler will
generate a sections construct with a section for each loop.

#pragma omp sections

{

#pragma omp section
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Figure 6.3: OpenMP is based on a fork-join model

for (...) {

// Loop 1

}

#pragma omp section

for (...) {

// Loop 2

}

...

}

If a given set contains only one loop, then the compiler checks to see if the loop can be
parallelized (no recursive dependencies) or not. If it can be parallelized, it generates:

#pragma omp for

for (...) {

// Loop code

}

otherwise it generates a single construct so that only one thread will execute the
loop:

#pragma omp single

for (...) {

// Loop code
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}

6.2.3 Example of parallel OpenMP code

To illustrate how FAUST uses the OpenMP directives, here is a very simple example,
two 1-pole filters in parallel connected to an adder (see figure 6.4 the corresponding
block-diagram):

filter(c) = *(1-c) : + ~ *(c);

process = filter (0.9), filter (0.9) : +;

1

0.9

-
*

+

0.9
*

filter(0.9)

1

0.9

-
*

+

0.9
*

filter(0.9)
+

process

Figure 6.4: two filters in parallel connected to an adder

The corresponding compute() method obtained using the -omp option is the follow-
ing:

virtual void compute (int fullcount ,

float** input ,

float** output)

{

float fRec0_tmp [32+4];

float fRec1_tmp [32+4];

float* fRec0 = &fRec0_tmp [4];

float* fRec1 = &fRec1_tmp [4];

#pragma omp parallel firstprivate(fRec0 ,fRec1)

{

for (int index = 0; index < fullcount;

index += 32)

{

int count = min (32, fullcount -index);

float* input0 = &input [0][ index ];

float* input1 = &input [1][ index ];

float* output0 = &output [0][ index];

#pragma omp single
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{

for (int i=0; i<4; i++)

fRec0_tmp[i]= fRec0_perm[i];

for (int i=0; i<4; i++)

fRec1_tmp[i]= fRec1_perm[i];

}

// SECTION : 1

#pragma omp sections

{

#pragma omp section

for (int i=0; i<count; i++) {

fRec0[i] = ((0.1f * input1[i])

+ (0.9f * fRec0[i-1]));

}

#pragma omp section

for (int i=0; i<count; i++) {

fRec1[i] = ((0.1f * input0[i])

+ (0.9f * fRec1[i-1]));

}

}

// SECTION : 2

#pragma omp for

for (int i=0; i<count; i++) {

output0[i] = (fRec1[i] + fRec0[i]);

}

// SECTION : 3

#pragma omp single

{

for (int i=0; i<4; i++)

fRec0_perm[i]= fRec0_tmp[count+i];

for (int i=0; i<4; i++)

fRec1_perm[i]= fRec1_tmp[count+i];

}

}

}

}

This code requires some comments:

1. The parallel construct #pragma omp parallel is the fundamental construct
that starts parallel execution. The number of parallel threads is generally the
number of CPU cores but it can be controlled in several ways.

2. Variables external to the parallel region are shared by default. The pragma
firstprivate(fRec0,fRec1) indicates that each thread should have its pri-
vate copy of fRec0 and fRec1. The reason is that accessing shared variables
requires an indirection and is quite inefficient compared to private copies.

3. The top level loop for (int index = 0;...)... is executed by all threads
simultaneously. The subsequent work-sharing directives inside the loop will
indicate how the work must be shared between the threads.
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4. Please note that an implied barrier exists at the end of each work-sharing region.
All threads must have executed the barrier before any of them can continue.

5. The work-sharing directive #pragma omp single indicates that this first sec-
tion will be executed by only one thread (any of them).

6. The work-sharing directive #pragma omp sections indicates that each cor-
responding #pragma omp section, here our two filters, will be executed in
parallel.

7. The loop construct #pragma omp for specifies that the iterations of the as-
sociated loop will be executed in parallel. The iterations of the loop are dis-
tributed across the parallel threads. For example, if we have two threads, the
first one can compute indices between 0 and count/2 and the other one be-
tween count/2 and count.

8. Finally #pragma omp single in section 3 indicates that this last section will
be executed by only one thread (any of them).

6.2.4 The scheduler code generator

With the --scheduler (or -sch) option given to the FAUST compiler, the compu-
tation graph is cut into separated computation loops (called "tasks"), and a "Work
Stealing Scheduler" is used to activate and execute them following their dependen-
cies. A pool of worked threads is created and each thread uses it’s own local WSQ
(Work Stealing Queue) of tasks. A WSQ is a special queue with a Push operation, a
"private" LIFO Pop operation and a "public" FIFO Pop operation.

Starting from a ready task, each thread follows the dependencies, possibly pushing
ready sub-tasks into it’s own local WSQ. When no more tasks can be activated on a
given computation path, the thread pops a task from it’s local WSQ. If the WSQ is
empty, then the thread is allowed to "steal" tasks from other threads WSQ.

The local LIFO Pop operation allows better cache locality and the FIFO steal Pop
"larger chuck" of work to be done. The reason for this is that many work stealing
workloads are divide-and-conquer in nature, stealing one of the oldest task implicitly
also steals a (potentially) large subtree of computations that will unfold once that
piece of work is stolen and run.

Compared to the OpenMP model (-omp) the new model is worse for simple FAUST
programs and usually starts to behave comparable or sometimes better for "complex
enough" FAUST programs. In any case, since OpenMP does not behave so well with
GCC compilers (only quite recent versions like GCC 4.4 start to show some improve-
ments), and is unusable on OSX in real-time contexts, this new scheduler option has
it’s own value. We plan to improve it adding a "pipelining" idea in the future.

6.2.5 Example of parallel scheduler code

To illustrate how FAUST generates the scheduler code, here is a very simple example,
two 1-pole filters in parallel connected to an adder (see figure 6.4 the corresponding
block-diagram):
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filter(c) = *(1-c) : + ~ *(c);

process = filter (0.9), filter (0.9) : +;

When -sch option is used, the content of the additional architecture/scheduler.h file
is inserted in the generated code. It contains code to deal with WSQ and thread
management. The compute() and computeThread() methods are the following:

virtual void compute (int fullcount ,

float** input ,

float** output)

{

GetRealTime ();

this ->input = input;

this ->output = output;

StartMeasure ();

for (fIndex = 0; fIndex < fullcount; fIndex += 32) {

fFullCount = min (32, fullcount -fIndex);

TaskQueue ::Init();

// Initialize end task

fGraph.InitTask (1,1);

// Only initialize tasks with inputs

fGraph.InitTask (4,2);

fIsFinished = false;

fThreadPool.SignalAll(fDynamicNumThreads - 1);

computeThread (0);

while (! fThreadPool.IsFinished ()) {}

}

StopMeasure(fStaticNumThreads ,

fDynamicNumThreads);

}

void computeThread (int cur_thread) {

float* fRec0 = &fRec0_tmp [4];

float* fRec1 = &fRec1_tmp [4];

// Init graph state

{

TaskQueue taskqueue;

int tasknum = -1;

int count = fFullCount;

// Init input and output

FAUSTFLOAT* input0 = &input [0][ fIndex ];

FAUSTFLOAT* input1 = &input [1][ fIndex ];

FAUSTFLOAT* output0 = &output [0][ fIndex ];

int task_list_size = 2;

int task_list [2] = {2,3};

taskqueue.InitTaskList(task_list_size , task_list

, fDynamicNumThreads , cur_thread , tasknum);

while (! fIsFinished) {

switch (tasknum) {

case WORK_STEALING_INDEX: {
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tasknum = TaskQueue :: GetNextTask(

cur_thread);

break;

}

case LAST_TASK_INDEX: {

fIsFinished = true;

break;

}

// SECTION : 1

case 2: {

// LOOP 0x101111680

// pre processing

for (int i=0; i<4; i++) fRec0_tmp[i

]= fRec0_perm[i];

// exec code

for (int i=0; i<count; i++) {

fRec0[i] = ((1.000000e-01f * (

float)input1[i]) + (0.9f *

fRec0[i-1]));

}

// post processing

for (int i=0; i<4; i++) fRec0_perm[i

]= fRec0_tmp[count+i];

fGraph.ActivateOneOutputTask(

taskqueue , 4, tasknum);

break;

}

case 3: {

// LOOP 0x1011125e0

// pre processing

for (int i=0; i<4; i++) fRec1_tmp[i

]= fRec1_perm[i];

// exec code

for (int i=0; i<count; i++) {

fRec1[i] = ((1.000000e-01f * (

float)input0[i]) + (0.9f *

fRec1[i-1]));

}

// post processing

for (int i=0; i<4; i++) fRec1_perm[i

]= fRec1_tmp[count+i];

fGraph.ActivateOneOutputTask(

taskqueue , 4, tasknum);

break;

}

case 4: {

// LOOP 0x101111580

// exec code
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for (int i=0; i<count; i++) {

output0[i] = (FAUSTFLOAT)(fRec1[

i] + fRec0[i]);

}

tasknum = LAST_TASK_INDEX;

break;

}

}

}

}

}



Chapter 7

Mathematical
Documentation

The FAUST compiler provides a mechanism to produce a self-describing documenta-
tion of the mathematical semantic of a FAUST program, essentially as a pdf file. The
corresponding options are -mdoc (short) or --mathdoc (long).

7.1 Goals of the mathdoc

There are three main goals, or uses, of this mathematical documentation:

1. to preserve signal processors, independently from any computer language but
only under a mathematical form;

2. to bring some help for debugging tasks, by showing the formulas as they are
really computed after the compilation stage;

3. to give a new teaching support, as a bridge between code and formulas for signal
processing.

7.2 Installation requirements

• faust, of course!

• svg2pdf (from the Cairo 2D graphics library), to convert block-diagrams, as
LATEX doesn’t eat SVG directly yet...

• breqn, a LATEX package to handle automatic breaking of long equations,

• pdflatex, to compile the LATEX output file.

67
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7.3 Generating the mathdoc

The easiest way to generate the complete mathematical documentation is to call the
faust2mathdoc script on a FAUST file, as the -mdoc option leave the documentation
production unfinished. For example:

faust2mathdoc noise.dsp

7.3.1 Invoking the -mdoc option

Calling directly faust -mdoc does only the first part of the work, generating:

• a top-level directory, suffixed with "-mdoc",

• 5 subdirectories (cpp/, pdf/, src/, svg/, tex/),

• a LATEX file containing the formulas,

• SVG files for block-diagrams.

At this stage:

• cpp/ remains empty,

• pdf/ remains empty,

• src/ contains all FAUST sources used (even libraries),

• svg/ contains SVG block-diagram files,

• tex/ contains the generated LATEX file.

7.3.2 Invoking faust2mathdoc

The faust2mathdoc script calls faust --mathdoc first, then it finishes the work:

• moving the output C++ file into cpp/,

• converting all SVG files into pdf files (you must have svg2pdf installed, from
the Cairo 2D graphics library),

• launching pdflatex on the LATEX file (you must have both pdflatex and the
breqn package installed),

• moving the resulting pdf file into pdf/.
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7.3.3 Online examples

To get an idea of the results of this mathematical documentation, which captures the
mathematical semantic of FAUST programs, you can look at two pdf files online:

• http://faust.grame.fr/pdf/karplus.pdf (automatic documentation),

• http://faust.grame.fr/pdf/noise.pdf (manual documentation).

You can also generate all mdoc pdfs at once, simply invoking the make mathdoc com-
mand inside the examples/ directory:

• for each %.dsp file, a complete %-mdoc directory will be generated,

• a single allmathpdfs/ directory will gather all the generated pdf files.

7.4 Automatic documentation

By default, when no <mdoc> tag can be found in the input FAUST file, the -mdoc

option automatically generates a LATEX file with four sections:

1. ”Equations of process”, gathering all formulas needed for process,

2. ”Block-diagram schema of process”, showing the top-level block-diagram of
process,

3. ”Notice of this documentation”, summing up generation and conventions
information,

4. ”Complete listing of the input code”, listing all needed input files (including
libraries).

7.5 Manual documentation

You can specify yourself the documentation instead of using the automatic mode,
with five xml-like tags. That permits you to modify the presentation and to add your
own comments, not only on process, but also about any expression you’d like to.
Note that as soon as you declare an <mdoc> tag inside your FAUST file, the default
structure of the automatic mode is ignored, and all the LATEX stuff becomes up to
you!

7.5.1 Six tags

Here are the six specific tags:

• <mdoc></mdoc>, to open a documentation field in the FAUST code,

– <equation></equation>, to get equations of a FAUST expression,

http://faust.grame.fr/pdf/karplus.pdf
http://faust.grame.fr/pdf/noise.pdf
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– <diagram></diagram>, to get the top-level block-diagram of a FAUST
expression,

– <metadata></metadata>, to reference FAUST metadatas (cf. declara-
tions), calling the corresponding keyword,

– <notice />, to insert the "adaptive” notice all formulas actually printed,

– <listing [attributes] />, to insert the listing of FAUST files called.

The <listing /> tag can have up to three boolean attributes (set to "true" by de-
fault):

• mdoctags for <mdoc> tags;

• dependencies for other files dependencies;

• distributed for the distribution of interleaved FAUST code between <mdoc>

sections.

7.5.2 The mdoc top-level tags

The <mdoc></mdoc> tags are the top-level delimiters for FAUST mathematical docu-
mentation sections. This means that the four other documentation tags can’t be used
outside these pairs (see section 3.2.3).

In addition of the four inner tags, <mdoc></mdoc> tags accept free LATEX text, in-
cluding its standard macros (like \section, \emph, etc.). This allows to manage the
presentation of resulting tex file directly from within the input FAUST file.

The complete list of the LATEX packages included by FAUST can be found in the file
architecture/latexheader.tex.

7.5.3 An example of manual mathdoc

<mdoc >

\title{<metadata >name </metadata >}

\author{<metadata >author </metadata >}

\date{\today}

\maketitle

\begin{tabular }{ll}

\hline

\textbf{name} & <metadata >name </metadata > \\

\textbf{version} & <metadata >version </metadata > \\

\textbf{author} & <metadata >author </metadata > \\

\textbf{license} & <metadata >license </metadata > \\

\textbf{copyright} & <metadata >copyright </metadata > \\

\hline

\end{tabular}

\bigskip

</mdoc >

// -----------------------------------------------------------------

// Noise generator and demo file for the Faust math documentation

// -----------------------------------------------------------------

declare name "Noise";
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declare version "1.1";

declare author "Grame";

declare author "Yghe";

declare license "BSD";

declare copyright "(c)GRAME 2009";

<mdoc >

\section{Presentation of the "noise.dsp" Faust program}

This program describes a white noise generator with an interactive

volume , using a random function.

\subsection{The random function}

</mdoc >

random = +(12345) ~*(1103515245);

<mdoc >

The \texttt{random} function describes a generator of random numbers ,

which equation follows. You should notice hereby the use of an

integer arithmetic on 32 bits , relying on integer wrapping for

big numbers.

<equation >random </equation >

\subsection{The noise function}

</mdoc >

noise = random /2147483647.0;

<mdoc >

The white noise then corresponds to:

<equation >noise </equation >

\subsection{Just add a user interface element to play volume !}

</mdoc >

process = noise * vslider("Volume[style:knob]", 0, 0, 1, 0.1);

<mdoc >

Endly , the sound level of this program is controlled by a user slider

, which gives the following equation:

<equation >process </equation >

\section{Block -diagram schema of process}

This process is illustrated on figure 1.

<diagram >process </diagram >

\section{Notice of this documentation}

You might be careful of certain information and naming conventions

used in this documentation:

<notice />

\section{Listing of the input code}

The following listing shows the input Faust code , parsed to compile

this mathematical documentation.

<listing mdoctags ="false" dependencies ="false" distributed ="true" />

</mdoc >

The following page which gathers the four resulting pages of noise.pdf in small size.
might give you an idea of the produced documentation.
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7.5.4 The -stripmdoc option

As you can see on the resulting file noisemetadata.pdf on its pages 3 and 4, the
listing of the input code (section 4) contains all the mathdoc text (here colored in
grey). As it may be useless in certain cases (see Goals, section 7.1), we provide an
option to strip mathdoc contents directly at compilation stage: -stripmdoc (short)
or --strip-mdoc-tags (long).

7.6 Localization of mathdoc files

By default, texts used by the documentator are in English, but you can specify an-
other language (French, German and Italian for the moment), using the -mdlang (or
--mathdoc-lang) option with a two-letters argument (en, fr, it, etc.).

The faust2mathdoc script also supports this option, plus a third short form with
-l:

faust2mathdoc -l fr myfaustfile.dsp

If you would like to contribute to the localization effort, feel free to translate the
mathdoc texts from any of the mathdoctexts-*.txt files, that are in the architecture
directory (mathdoctexts-fr.txt, mathdoctexts-it.txt, etc.). As these files are

dynamically loaded, just adding a new file with an appropriate name should work.
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76 CHAPTER 7. MATHEMATICAL DOCUMENTATION

7.7 Summary of the mathdoc generation steps

1. First, to get the full mathematical documentation done on your faust file, call
faust2mathdoc myfaustfile.dsp.

2. Then, open the pdf file myfaustfile-mdoc/pdf/myfaustfile.pdf.

3. That’s all !
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