declare name "Faust Oscillator Library"; declare author "Julius O. Smith (jos at ccrma.stanford.edu)"; declare copyright "Julius O. Smith III"; declare version "1.10"; declare license "STK-4.3"; // Synthesis Tool Kit 4.3 (MIT style license) import("music.lib"); // SR, ... import("filter.lib"); // wgr, nlf2, tf2 //===================== Virtual Analog Oscillators ======================== //------------------------ Impulse Train: imptrain ------------------------ imptrain(freq) = sawpos(freq)<:-(mem)<0; //--- Pulse-Train and Square-Wave Oscillators: pulsetrainpos, squarewave[pos] // In all cases, the first pulse jumps to 1 at time 0. // Basic unit-amplitude nonnegative pulse train with duty cycle between 0 and 1: pulsetrainpos(freq,duty) = float(sawpos(freq) <= duty); // Positive square wave = pulse train with 50% duty cycle: squarewavepos(freq) = pulsetrainpos(freq,0.5); // Unit amplitude square wave = zero-mean pulse train with 50% duty cycle: squarewave(freq) = 2*squarewavepos(freq) - 1; //---------- Sawtooth: rawsaw, sawpos, saw1, saw2, sawtooth ------------- // Sawtooth waveform oscillators for virtual analog synthesis et al. // The 'simple' versions (rawsaw, sawpos, saw1), are mere samplings of // the ideal continuous-time ("analog") waveforms. While simple, the // aliasing due to sampling is quite audible. The differentiated // polynomial waveform family (saw2, // --- rawsaw --- // simple sawtooth waveform oscillator between 0 and period in samples: rawsaw(periodsamps) = (_,periodsamps : fmod) ~ +(1.0); // --- sawpos --- // simple sawtooth waveform oscillator between 0 and 1 sawpos(freq) = rawsaw(periodsamps) / periodsamps with { periodsamps = float(SR)/freq; // period in samples (not nec. integer) }; // --- saw1 --- // simple sawtooth waveform oscillator between -1 and 1 saw1(freq) = 2.0 * sawpos(freq) - 1.0; // zero-mean in [-1,1) // --- saw2 --- // Differentiated Parabolic Wave sawtooth (less aliasing) // Reference: Valimaki, IEEE Signal Processing Letters, March 2005 saw2(freq) = saw1(freq) <: * <: -(mem) : *(0.25'*SR/freq); // --- sawtooth --- sawtooth = saw2; // default choice //-------------------------- sawtooth_demo --------------------------- // USAGE: sawtooth_demo : _ sawtooth_demo = signal with { osc_group(x) = vgroup("[0] SAWTOOTH OSCILLATOR [tooltip: See Faust's oscillator.lib for documentation and references]",x); knob_group(x) = osc_group(hgroup("[1]", x)); ampdb = knob_group(vslider("[1] Amplitude [unit:dB] [style:knob] [tooltip: Sawtooth waveform amplitude]", -20,-120,10,0.1)); amp = ampdb : smooth(0.999) : db2linear; freq = knob_group( vslider("[2] Frequency [unit:PK] [style:knob] [tooltip: Sawtooth frequency as a Piano Key (PK) number (A440 = key 49)]", 49,1,88,0.01) : pianokey2hz); pianokey2hz(x) = 440.0*pow(2.0, (x-49.0)/12); // piano key 49 = A440 (also defined in effect.lib) detune1 = 1 + 0.01 * knob_group( vslider("[3] Detuning 1 [unit:%%] [style:knob] [tooltip: Percentange frequency-shift up or down for second oscillator]", -0.1,-10,10,0.01)); detune2 = 1 + 0.01 * knob_group( vslider("[4] Detuning 2 [unit:%%] [style:knob] [tooltip: Percentange frequency-shift up or down for third detuned oscillator]", +0.1,-10,10,0.01)); portamento = knob_group( vslider("[5] Portamento [unit:sec] [style:knob] [tooltip: Portamento (frequency-glide) time-constant in seconds]", 0.1,0.01,1,0.001)); sfreq = freq : smooth(tau2pole(portamento)); tone = (amp/3) * (sawtooth(sfreq) + sawtooth(sfreq*detune1) + sawtooth(sfreq*detune2)); signal = amp * select2(ei, select2(ss, tone, pink_noise), _); checkbox_group(x) = knob_group(vgroup("[6] Alternate Signals",x)); ss = checkbox_group(checkbox("[0] [tooltip: Pink Noise (or 1/f noise) is Constant-Q Noise, meaning that it has the same total power in every octave] Pink Noise Instead (uses only Amplitude control on the left)")); ei = checkbox_group(checkbox( "[1] External Input Instead (overrides Sawtooth/Noise selection above)")); }; // --- Correction-filtered versions of saw2: saw2f2, saw2f4 ---- saw2f2 = saw2 : cf2 with { cf2 = tf2(1.155704605878911, 0.745184288225518,0.040305967265900, 0.823765146386639, 0.117420665547108); }; saw2f4 = saw2 : cf4 with { cf4 = iir((1.155727435125014, 2.285861038554662, 1.430915027294021, 0.290713280893317, 0.008306401748854), (2.156834679164532, 1.559532244409321, 0.423036498118354, 0.032080681130972)); }; // --- sawN, saw3,saw4,saw5,saw6 --- // Differentiated Polynomial Wave (DPW) sawtooth (progressively less aliasing) // Reference: // "Alias-Suppressed Oscillators based on Differentiated Polynomial Waveforms", // Vesa Valimaki, Juhan Nam, Julius Smith, and Jonathan Abel, // IEEE Tr. Acoustics, Speech, and Language Processing (IEEE-ASLP), // Vol. 18, no. 5, May 2010. sawN(N,freq) = saw1 : poly(N) : D(N-1) : gate(N-1) with { p0n = SR/freq; sawpos = (_,1:fmod) ~ +(1/p0n); // sawtooth waveform in [0,1) saw1 = 2*sawpos - 1; // zero average mean, unit max amp poly(2,x) = x*x; poly(3,x) = x*x*x - x; poly(4,x) = poly(2,x)*(poly(2,x) - 2); poly(5,x) = pow(x,5) - pow(x,3)*10/3 + x*7/3; poly(6,x) = pow(x,6) - 5*pow(x,4) + 7*poly(2,x); diff1(x) = (x - x')/(2/p0n); diff(N) = seq(n,N,diff1); // N diffs in series D(1) = diff1/2; D(2) = diff(2)/6; D(3) = diff(3)/24; D(4) = diff(4)/120; D(5) = diff(5)/720; gatedelay(n,d,x) = x@(int(d)&(n-1)); // from music.lib gate(N) = * (1 : gatedelay(8,N)); // delayed step for blanking startup glitch }; saw3 = sawN(3); saw4 = sawN(4); saw5 = sawN(5); saw6 = sawN(6); //----------------------- Filter-Based Oscillators ------------------------ // Quick Guide (more complete documentation forthcoming): // // USAGE: osc[b|r|rs|rc|s|w](f), where f = frequency in Hz. // // oscb: one-multiply, two-adds, amplitude varies with frequency, avoid dc // oscr: four-multipies, two-adds, amplitude unchanging with frequency, // dc ok, amp slowly drifts, // sine and cosine outputs available (exact phase quadrature) // oscrs: sine output of oscr // oscrc: cosine output of oscr // oscs: two-multiplies, two-adds, amplitude varies slightly with frequency, // dc ok, no amp drift, likely optimizable to be the fastest no-drift case // oscw: one/two-multiply, three-adds, amplitude steady with frequency, no amp drift, // sine and cosine outputs available (exact phase quadrature), // numerical difficulty below 10 Hz, // likely optimizable to be best (above 10 Hz) for custom silicon // (one multiply when frequency is constant, two otherwise). impulse = 1-1'; // used to start filter-based oscillators //-------------------------- oscb -------------------------------- // Sinusoidal oscillator based on the biquad // oscb(f) = impulse : tf2(1,0,0,a1,1) with { a1 = -2*cos(2*PI*f/SR); }; //-------------------------- oscr -------------------------------- // Sinusoidal oscillator based on 2D vector rotation, // = undamped "coupled-form" resonator // = lossless 2nd-order normalized ladder filter // // Reference: // https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html // oscrq(f) = impulse : nlf2(f,1); // sine and cosine outputs oscrs(f) = impulse : nlf2(f,1) : _,!; // sine oscrc(f) = impulse : nlf2(f,1) : !,_; // cosine oscr = oscrs; // default = sine case //-------------------------- oscs -------------------------------- // Sinusoidal oscillator based on the state variable filter // = undamped "modified-coupled-form" resonator // oscs(f) = (*(0-1) : sint(wn) : sintp(wn,impulse)) ~ _ with { wn = 2*PI*f/SR; // approximate // wn = 2*sin(PI*f/SR); // exact sub(x,y) = y-x; sint(x) = *(x) : + ~ _ ; // frequency-scaled integrator sintp(x,y) = *(x) : +(y): + ~ _ ; // same + state input }; //----------------- oscw, oscwq, oscwc, oscws -------------------- // Sinusoidal oscillator based on the waveguide resonator wgr // // oscwc - unit-amplitude cosine oscillator // oscws - unit-amplitude sine oscillator // oscq - unit-amplitude cosine and sine (quadrature) oscillator // oscw - default = oscwc for maximum speed // // Reference: // https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html // oscwc(fr) = impulse : wgr(fr,1) : _,!; // cosine (cheapest at 1 mpy/sample) oscws(fr) = impulse : wgr(fr,1) : !,_; // sine (needs a 2nd scaling mpy) oscq(fr) = impulse : wgr(fr,1); // phase quadrature outputs oscw = oscwc; //-------------------------- oscrs_demo --------------------------- oscrs_demo = signal with { osc_group(x) = vgroup("[0] SINE WAVE OSCILLATOR oscrs [tooltip: Sine oscillator based on 2D vector rotation]",x); knob_group(x) = osc_group(hgroup("[1]", x)); // ampdb = knob_group(vslider("[1] Amplitude [unit:dB] [style:knob] ampdb = knob_group(hslider("[1] Amplitude [unit:dB] [tooltip: Sawtooth waveform amplitude]", -20,-120,10,0.1)); amp = ampdb : smooth(0.999) : db2linear; freq = knob_group( // vslider("[2] Frequency [unit:PK] [style:knob] hslider("[2] Frequency [unit:PK] [tooltip: Sine wave frequency as a Piano Key (PK) number (A440 = 49 PK)]", 49,1,88,0.01) : pianokey2hz); pianokey2hz(x) = 440.0*pow(2.0, (x-49.0)/12); // (also defined in effect.lib) portamento = knob_group( // vslider("[3] Portamento [unit:sec] [style:knob] hslider("[3] Portamento [unit:sec] [tooltip: Portamento (frequency-glide) time-constant in seconds]", 0.1,0,1,0.001)); sfreq = freq : smooth(tau2pole(portamento)); signal = amp * oscrs(sfreq); }; oscr_demo = oscrs_demo; // synonym //--------------------------- pink_noise -------------------------- // Pink noise (1/f noise) generator (third-order approximation) // // USAGE: pink_noise : _; // // Reference: // https://ccrma.stanford.edu/~jos/sasp/Example_Synthesis_1_F_Noise.html // pink_noise = noise : iir((0.049922035, -0.095993537, 0.050612699, -0.004408786), (-2.494956002, 2.017265875, -0.522189400));