/************************************************************************ ************************************************************************ FAUST library file Copyright (C) 2003-2011 GRAME, Centre National de Creation Musicale --------------------------------------------------------------------- This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. ************************************************************************ ************************************************************************/ declare name "Music Library"; declare author "GRAME"; declare copyright "GRAME"; declare version "1.0"; declare license "LGPL"; import("math.lib"); //----------------------------------------------- // DELAY LINE //----------------------------------------------- frac(n) = n-int(n); index(n) = &(n-1) ~ +(1); // n = 2**i //delay(n,d,x) = rwtable(n, 0.0, index(n), x, (index(n)-int(d)) & (n-1)); delay(n,d,x) = x@(int(d)&(n-1)); fdelay(n,d,x) = delay(n,int(d),x)*(1 - frac(d)) + delay(n,int(d)+1,x)*frac(d); delay1s(d) = delay(65536,d); delay2s(d) = delay(131072,d); delay5s(d) = delay(262144,d); delay10s(d) = delay(524288,d); delay21s(d) = delay(1048576,d); delay43s(d) = delay(2097152,d); fdelay1s(d) = fdelay(65536,d); fdelay2s(d) = fdelay(131072,d); fdelay5s(d) = fdelay(262144,d); fdelay10s(d) = fdelay(524288,d); fdelay21s(d) = fdelay(1048576,d); fdelay43s(d) = fdelay(2097152,d); millisec = SR/1000.0; time1s = hslider("time", 0, 0, 1000, 0.1)*millisec; time2s = hslider("time", 0, 0, 2000, 0.1)*millisec; time5s = hslider("time", 0, 0, 5000, 0.1)*millisec; time10s = hslider("time", 0, 0, 10000, 0.1)*millisec; time21s = hslider("time", 0, 0, 21000, 0.1)*millisec; time43s = hslider("time", 0, 0, 43000, 0.1)*millisec; echo1s = vgroup("echo 1000", +~(delay(65536, int(hslider("millisecond", 0, 0, 1000, 0.10)*millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0))); echo2s = vgroup("echo 2000", +~(delay(131072, int(hslider("millisecond", 0, 0, 2000, 0.25)*millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0))); echo5s = vgroup("echo 5000", +~(delay(262144, int(hslider("millisecond", 0, 0, 5000, 0.50)*millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0))); echo10s = vgroup("echo 10000", +~(delay(524288, int(hslider("millisecond", 0, 0, 10000, 1.00)*millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0))); echo21s = vgroup("echo 21000", +~(delay(1048576, int(hslider("millisecond", 0, 0, 21000, 1.00)*millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0))); echo43s = vgroup("echo 43000", +~(delay(2097152, int(hslider("millisecond", 0, 0, 43000, 1.00)*millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0))); //--------------------------sdelay(N,it,dt)---------------------------- // s(mooth)delay : a mono delay that doesn't click and doesn't // transpose when the delay time is changed. It takes 4 input signals // and produces a delayed output signal // // USAGE : ... : sdelay(N,it,dt) : ... // // Where : // = maximal delay in samples (must be a constant power of 2, for example 65536) // = interpolation time (in samples) for example 1024 //
= delay time (in samples) // < > = input signal we want to delay //-------------------------------------------------------------------------- sdelay(N, it, dt) = ctrl(it,dt),_ : ddi(N) with { //---------------------------ddi(N,i,d0,d1)------------------------------- // DDI (Double Delay with Interpolation) : the input signal is sent to two // delay lines. The outputs of these delay lines are crossfaded with // an interpolation stage. By acting on this interpolation value one // can move smoothly from one delay to another. When is 0 we can // freely change the delay time of line 1, when it is 1 we can freely change // the delay time of line 0. // // = maximal delay in samples (must be a power of 2, for example 65536) // = interpolation value between 0 and 1 used to crossfade the outputs of the // two delay lines (0.0: first delay line, 1.0: second delay line) // = delay time of delay line 0 in samples between 0 and -1 // = delay time of delay line 1 in samples between 0 and -1 // < > = the input signal we want to delay //------------------------------------------------------------------------- ddi(N, i, d0, d1) = _ <: delay(N,d0), delay(N,d1) : interpolate(i); //----------------------------ctrl(it,dt)------------------------------------ // Control logic for a Double Delay with Interpolation according to two // // USAGE : ctrl(it,dt) // where : // an interpolation time (in samples, for example 256) //
a delay time (in samples) // // ctrl produces 3 outputs : an interpolation value and two delay // times and . These signals are used to control a ddi (Double Delay with Interpolation). // The principle is to detect changes in the input delay time dt, then to // change the delay time of the delay line currently unused and then by a // smooth crossfade to remove the first delay line and activate the second one. // // The control logic has an internal state controlled by 4 elements // : the interpolation variation (0, 1/it, -1/it) // : the interpolation value (between 0 and 1) // : the delay time of line 0 // : the delay time of line 1 // // Please note that the last stage (!,_,_,_) cut because it is only // used internally. //------------------------------------------------------------------------- ctrl(it, dt) = \(v,ip,d0,d1).( (nv, nip, nd0, nd1) with { // interpolation variation nv = if (v!=0.0, // if variation we are interpolating if( (ip>0.0) & (ip<1.0), v , 0), // should we continue or not ? if ((ip==0.0) & (dt!=d0), 1.0/it, // if true xfade from dl0 to dl1 if ((ip==1.0) & (dt!=d1), -1.0/it, // if true xfade from dl1 to dl0 0))); // nothing to change // interpolation value nip = ip+nv : min(1.0) : max(0.0); // update delay time of line 0 if needed nd0 = if ((ip >= 1.0) & (d1!=dt), dt, d0); // update delay time of line 0 if needed nd1 = if ((ip <= 0.0) & (d0!=dt), dt, d1); } ) ~ (_,_,_,_) : (!,_,_,_); }; //----------------------------------------------- // Tempo, beats and pulses //----------------------------------------------- tempo(t) = (60*SR)/t; // tempo(t) -> samples period(p) = %(int(p))~+(1); // signal en dent de scie de periode p pulse(t) = period(t)==0; // pulse (10000...) de periode p pulsen(n,t) = period(t)0. //----------------------------------------------- multirandom(n) = randomize(n) ~_ with { randomize (1) = +(12345) : *(1103515245); randomize (n) = randomize(1) <: randomize(n-1),_; }; //----------------------------------------------- // Generates multiple decorrelated noises // in parallel. Expects n>0. //----------------------------------------------- multinoise(n) = multirandom(n) : par(i,n,/(RANDMAX)) with { RANDMAX = 2147483647.0; }; //------------------------------------------------ noises(N,i) = multinoise(N) : selector(i,N); //----------------------------------------------- // osc(freq) : Sinusoidal Oscillator //----------------------------------------------- tablesize = 1 << 16; samplingfreq = SR; time = (+(1)~_ ) - 1; // 0,1,2,3,... sinwaveform = float(time)*(2.0*PI)/float(tablesize) : sin; decimal(x) = x - floor(x); phase(freq) = freq/float(samplingfreq) : (+ : decimal) ~ _ : *(float(tablesize)); osc(freq) = rdtable(tablesize, sinwaveform, int(phase(freq)) ); osci(freq) = s1 + d * (s2 - s1) with { i = int(phase(freq)); d = decimal(phase(freq)); s1 = rdtable(tablesize+1,sinwaveform,i); s2 = rdtable(tablesize+1,sinwaveform,i+1);}; //----------------------------------------------- // ADSR envelop //----------------------------------------------- // a,d,s,r = attack (#samples), decay (sec), sustain (percentage), release (sec) // t = trigger signal adsr(a,d,s,r,t) = env ~ (_,_) : (!,_) // the 2 'state' signals are fed back with { env (p2,y) = (t>0) & (p2|(y>=1)), // p2 = decay-sustain phase (y + p1*u - (p2&(y>s))*v*y - p3*w*y) // y = envelop signal *((p3==0)|(y>=eps)) // cut off tails to prevent denormals with { p1 = (p2==0) & (t>0) & (y<1); // p1 = attack phase p3 = (t<=0) & (y>0); // p3 = release phase // #samples in attack, decay, release, must be >0 na = SR*a+(a==0.0); nd = SR*d+(d==0.0); nr = SR*r+(r==0.0); // correct zero sustain level z = s+(s==0.0)*db2linear(-60); // attack, decay and (-60dB) release rates u = 1/na; v = 1-pow(z, 1/nd); w = 1-1/pow(z*db2linear(60), 1/nr); // values below this threshold are considered zero in the release phase eps = db2linear(-120); }; }; //----------------------------------------------- // Spatialisation //----------------------------------------------- panner(c) = _ <: *(1-c), *(c); bus2 = _,_; bus3 = _,_,_; bus4 = _,_,_,_; bus5 = _,_,_,_,_; bus6 = _,_,_,_,_,_; bus7 = _,_,_,_,_,_,_; bus8 = _,_,_,_,_,_,_,_; gain2(g) = *(g),*(g); gain3(g) = *(g),*(g),*(g); gain4(g) = *(g),*(g),*(g),*(g); gain5(g) = *(g),*(g),*(g),*(g),*(g); gain6(g) = *(g),*(g),*(g),*(g),*(g),*(g); gain7(g) = *(g),*(g),*(g),*(g),*(g),*(g),*(g); gain8(g) = *(g),*(g),*(g),*(g),*(g),*(g),*(g),*(g); //------------------------------------------------------ // // GMEM SPAT // n-outputs spatializer // implementation of L. Pottier // //------------------------------------------------------ // // n = number of outputs // r = rotation (between 0 et 1) // d = distance of the source (between 0 et 1) // //------------------------------------------------------ spat(n,a,d) = _ <: par(i, n, *( scaler(i, n, a, d) : smooth(0.9999) )) with { scaler(i,n,a,d) = (d/2.0+0.5) * sqrt( max(0.0, 1.0 - abs(fmod(a+0.5+float(n-i)/n, 1.0) - 0.5) * n * d) ); smooth(c) = *(1-c) : +~*(c); }; //--------------- Second Order Generic Transfert Function ------------------------- // TF2(b0,b1,b2,a1,a2) // //--------------------------------------------------------------------------------- TF2(b0,b1,b2,a1,a2) = sub ~ conv2(a1,a2) : conv3(b0,b1,b2) with { conv3(k0,k1,k2,x) = k0*x + k1*x' + k2*x''; conv2(k0,k1,x) = k0*x + k1*x'; sub(x,y) = y-x; }; /*************************** Break Point Functions *************************** bpf is an environment (a group of related definitions) tha can be used to create break-point functions. It contains three functions : - start(x,y) to start a break-point function - end(x,y) to end a break-point function - point(x,y) to add intermediate points to a break-point function A minimal break-point function must contain at least a start and an end point : f = bpf.start(x0,y0) : bpf.end(x1,y1); A more involved break-point function can contains any number of intermediate points f = bpf.start(x0,y0) : bpf.point(x1,y1) : bpf.point(x2,y2) : bpf.end(x3,y3); In any case the x_{i} must be in increasing order (for all i, x_{i} < x_{i+1}) For example the following definition : f = bpf.start(x0,y0) : ... : bpf.point(xi,yi) : ... : bpf.end(xn,yn); implements a break-point function f such that : f(x) = y_{0} when x < x_{0} f(x) = y_{n} when x > x_{n} f(x) = y_{i} + (y_{i+1}-y_{i})*(x-x_{i})/(x_{i+1}-x_{i}) when x_{i} <= x and x < x_{i+1} ******************************************************************************/ bpf = environment { // Start a break-point function start(x0,y0) = \(x).(x0,y0,x,y0); // Add a break-point point(x1,y1) = \(x0,y0,x,y).(x1, y1, x , if (x < x0, y, if (x < x1, y0 + (x-x0)*(y1-y0)/(x1-x0), y1))); // End a break-point function end (x1,y1) = \(x0,y0,x,y).(if (x < x0, y, if (x < x1, y0 + (x-x0)*(y1-y0)/(x1-x0), y1))); // definition of if if (c,t,e) = select2(c,e,t); };