declare name "Harpsichord"; declare description "Nonlinear WaveGuide Commuted Harpsichord"; declare author "Romain Michon (rmichon@ccrma.stanford.edu)"; declare copyright "Romain Michon"; declare version "1.0"; declare licence "STK-4.3"; // Synthesis Tool Kit 4.3 (MIT style license); declare description "A commuted WaveGuide Harpsichord."; import("music.lib"); import("instrument.lib"); //==================== GUI SPECIFICATION ================ freq = nentry("h:Basic_Parameters/freq [1][unit:Hz] [tooltip:Tone frequency]",440,20,20000,1); gain = nentry("h:Basic_Parameters/gain [1][tooltip:Gain (value between 0 and 1)]",0.8,0,1,0.01); gate = button("h:Basic_Parameters/gate [1][tooltip:noteOn = 1, noteOff = 0]"); typeModulation = nentry("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Modulation_Type [2][tooltip: 0=theta is modulated by the incoming signal; 1=theta is modulated by the averaged incoming signal; 2=theta is modulated by the squared incoming signal; 3=theta is modulated by a sine wave of frequency freqMod; 4=theta is modulated by a sine wave of frequency freq;]",0,0,4,1); nonLinearity = hslider("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Nonlinearity [2][tooltip:Nonlinearity factor (value between 0 and 1)]",0,0,1,0.01); frequencyMod = hslider("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Modulation_Frequency [2][unit:Hz][tooltip:Frequency of the sine wave for the modulation of theta (works if Modulation Type=3)]",220,20,1000,0.1); //==================== PROCESSING ================ //----------------------- Nonlinear filter ---------------------------- //nonlinearities are created by the nonlinear passive allpass ladder filter declared in filter.lib //nonlinear filter order nlfOrder = 6; //nonLinearModultor is declared in instrument.lib, it adapts allpassnn from filter.lib //for using it with waveguide instruments NLFM = nonLinearModulator((nonLinearity : smooth(0.999)),1,freq, typeModulation,(frequencyMod : smooth(0.999)),nlfOrder); //----------------------- Synthesis parameters computing and functions declaration ---------------------------- //convert a frequency in a midi note number freqToNoteNumber = (log-log(440))/log(2)*12+69+0.5 : int; freqn = freq : freqToNoteNumber; //string excitation soundBoard = dryTapAmp*noise with{ dryTapAmpT60 = ffunction(float getValueDryTapAmpT60(float), ,""); noteCutOffTime = freqn : dryTapAmpT60*gain; dryTapAmp = asympT60(0.15,0,noteCutOffTime,gate); }; //loopfilter is a biquad filter whose coefficients are extracted from a C++ file using the foreign function mechanism loopFilter = TF2(b0,b1,b2,a1,a2) with{ //functions are imported from the C++ file loopFilterb0 = ffunction(float getValueLoopFilterb0(float), ,""); loopFilterb1 = ffunction(float getValueLoopFilterb1(float), ,""); loopFilterb2 = ffunction(float getValueLoopFilterb2(float), ,""); loopFiltera1 = ffunction(float getValueLoopFiltera1(float), ,""); loopFiltera2 = ffunction(float getValueLoopFiltera2(float), ,""); //coefficients are extracted from the functions b0 = loopFilterb0(freqn); b1 = loopFilterb1(freqn); b2 = loopFilterb2(freqn); a1 = loopFiltera1(freqn); a2 = loopFiltera2(freqn); }; //delay length as a number of samples delayLength = SR/freq; //stereoizer is declared in instrument.lib and implement a stereo spacialisation in function of //the frequency period in number of samples stereo = stereoizer(delayLength); //----------------------- Algorithm implementation ---------------------------- //envelope for string loop resonance time stringLoopGainT = gate*0.9996 + (gate<1)*releaseLoopGain(freqn)*0.9 : smooth(0.999) with{ releaseLoopGain = ffunction(float getValueReleaseLoopGain(float), ,""); }; //one string string = (*(stringLoopGainT)+_ : delay(4096,delayLength) : loopFilter)~NLFM; process = soundBoard : string : stereo : instrReverb;