X-Git-Url: https://scm.cri.ensmp.fr/git/Faustine.git/blobdiff_plain/1059e1cc0c2ecfa237406949aa26155b6a5b9154..66f23d4fabf89ad09adbd4dfc15ac6b5b2b7da83:/interpreter/lib/src/libsndfile-1.0.25/src/G72x/g72x.c diff --git a/interpreter/lib/src/libsndfile-1.0.25/src/G72x/g72x.c b/interpreter/lib/src/libsndfile-1.0.25/src/G72x/g72x.c new file mode 100644 index 0000000..3fae81a --- /dev/null +++ b/interpreter/lib/src/libsndfile-1.0.25/src/G72x/g72x.c @@ -0,0 +1,644 @@ +/* + * This source code is a product of Sun Microsystems, Inc. and is provided + * for unrestricted use. Users may copy or modify this source code without + * charge. + * + * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING + * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR + * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. + * + * Sun source code is provided with no support and without any obligation on + * the part of Sun Microsystems, Inc. to assist in its use, correction, + * modification or enhancement. + * + * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE + * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE + * OR ANY PART THEREOF. + * + * In no event will Sun Microsystems, Inc. be liable for any lost revenue + * or profits or other special, indirect and consequential damages, even if + * Sun has been advised of the possibility of such damages. + * + * Sun Microsystems, Inc. + * 2550 Garcia Avenue + * Mountain View, California 94043 + */ + +/* + * g72x.c + * + * Common routines for G.721 and G.723 conversions. + */ + +#include +#include +#include + +#include "g72x.h" +#include "g72x_priv.h" + +static G72x_STATE * g72x_state_new (void) ; +static int unpack_bytes (int bits, int blocksize, const unsigned char * block, short * samples) ; +static int pack_bytes (int bits, const short * samples, unsigned char * block) ; + +static +short power2 [15] = +{ 1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80, + 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000 +} ; + +/* + * quan() + * + * quantizes the input val against the table of size short integers. + * It returns i if table[i - 1] <= val < table[i]. + * + * Using linear search for simple coding. + */ +static +int quan (int val, short *table, int size) +{ + int i; + + for (i = 0; i < size; i++) + if (val < *table++) + break; + return (i); +} + +/* + * fmult() + * + * returns the integer product of the 14-bit integer "an" and + * "floating point" representation (4-bit exponent, 6-bit mantessa) "srn". + */ +static +int fmult (int an, int srn) +{ + short anmag, anexp, anmant; + short wanexp, wanmant; + short retval; + + anmag = (an > 0) ? an : ((-an) & 0x1FFF); + anexp = quan(anmag, power2, 15) - 6; + anmant = (anmag == 0) ? 32 : + (anexp >= 0) ? anmag >> anexp : anmag << -anexp; + wanexp = anexp + ((srn >> 6) & 0xF) - 13; + + /* + ** The original was : + ** wanmant = (anmant * (srn & 0x3F) + 0x30) >> 4 ; + ** but could see no valid reason for the + 0x30. + ** Removed it and it improved the SNR of the codec. + */ + + wanmant = (anmant * (srn & 0x3F)) >> 4 ; + + retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) : + (wanmant >> -wanexp); + + return (((an ^ srn) < 0) ? -retval : retval); +} + +static G72x_STATE * g72x_state_new (void) +{ return calloc (1, sizeof (G72x_STATE)) ; +} + +/* + * private_init_state() + * + * This routine initializes and/or resets the G72x_PRIVATE structure + * pointed to by 'state_ptr'. + * All the initial state values are specified in the CCITT G.721 document. + */ +void private_init_state (G72x_STATE *state_ptr) +{ + int cnta; + + state_ptr->yl = 34816; + state_ptr->yu = 544; + state_ptr->dms = 0; + state_ptr->dml = 0; + state_ptr->ap = 0; + for (cnta = 0; cnta < 2; cnta++) { + state_ptr->a[cnta] = 0; + state_ptr->pk[cnta] = 0; + state_ptr->sr[cnta] = 32; + } + for (cnta = 0; cnta < 6; cnta++) { + state_ptr->b[cnta] = 0; + state_ptr->dq[cnta] = 32; + } + state_ptr->td = 0; +} /* private_init_state */ + +struct g72x_state * g72x_reader_init (int codec, int *blocksize, int *samplesperblock) +{ G72x_STATE *pstate ; + + if ((pstate = g72x_state_new ()) == NULL) + return NULL ; + + private_init_state (pstate) ; + + pstate->encoder = NULL ; + + switch (codec) + { case G723_16_BITS_PER_SAMPLE : /* 2 bits per sample. */ + pstate->decoder = g723_16_decoder ; + *blocksize = G723_16_BYTES_PER_BLOCK ; + *samplesperblock = G723_16_SAMPLES_PER_BLOCK ; + pstate->codec_bits = 2 ; + pstate->blocksize = G723_16_BYTES_PER_BLOCK ; + pstate->samplesperblock = G723_16_SAMPLES_PER_BLOCK ; + break ; + + case G723_24_BITS_PER_SAMPLE : /* 3 bits per sample. */ + pstate->decoder = g723_24_decoder ; + *blocksize = G723_24_BYTES_PER_BLOCK ; + *samplesperblock = G723_24_SAMPLES_PER_BLOCK ; + pstate->codec_bits = 3 ; + pstate->blocksize = G723_24_BYTES_PER_BLOCK ; + pstate->samplesperblock = G723_24_SAMPLES_PER_BLOCK ; + break ; + + case G721_32_BITS_PER_SAMPLE : /* 4 bits per sample. */ + pstate->decoder = g721_decoder ; + *blocksize = G721_32_BYTES_PER_BLOCK ; + *samplesperblock = G721_32_SAMPLES_PER_BLOCK ; + pstate->codec_bits = 4 ; + pstate->blocksize = G721_32_BYTES_PER_BLOCK ; + pstate->samplesperblock = G721_32_SAMPLES_PER_BLOCK ; + break ; + + case G721_40_BITS_PER_SAMPLE : /* 5 bits per sample. */ + pstate->decoder = g723_40_decoder ; + *blocksize = G721_40_BYTES_PER_BLOCK ; + *samplesperblock = G721_40_SAMPLES_PER_BLOCK ; + pstate->codec_bits = 5 ; + pstate->blocksize = G721_40_BYTES_PER_BLOCK ; + pstate->samplesperblock = G721_40_SAMPLES_PER_BLOCK ; + break ; + + default : + free (pstate) ; + return NULL ; + } ; + + return pstate ; +} /* g72x_reader_init */ + +struct g72x_state * g72x_writer_init (int codec, int *blocksize, int *samplesperblock) +{ G72x_STATE *pstate ; + + if ((pstate = g72x_state_new ()) == NULL) + return NULL ; + + private_init_state (pstate) ; + pstate->decoder = NULL ; + + switch (codec) + { case G723_16_BITS_PER_SAMPLE : /* 2 bits per sample. */ + pstate->encoder = g723_16_encoder ; + *blocksize = G723_16_BYTES_PER_BLOCK ; + *samplesperblock = G723_16_SAMPLES_PER_BLOCK ; + pstate->codec_bits = 2 ; + pstate->blocksize = G723_16_BYTES_PER_BLOCK ; + pstate->samplesperblock = G723_16_SAMPLES_PER_BLOCK ; + break ; + + case G723_24_BITS_PER_SAMPLE : /* 3 bits per sample. */ + pstate->encoder = g723_24_encoder ; + *blocksize = G723_24_BYTES_PER_BLOCK ; + *samplesperblock = G723_24_SAMPLES_PER_BLOCK ; + pstate->codec_bits = 3 ; + pstate->blocksize = G723_24_BYTES_PER_BLOCK ; + pstate->samplesperblock = G723_24_SAMPLES_PER_BLOCK ; + break ; + + case G721_32_BITS_PER_SAMPLE : /* 4 bits per sample. */ + pstate->encoder = g721_encoder ; + *blocksize = G721_32_BYTES_PER_BLOCK ; + *samplesperblock = G721_32_SAMPLES_PER_BLOCK ; + pstate->codec_bits = 4 ; + pstate->blocksize = G721_32_BYTES_PER_BLOCK ; + pstate->samplesperblock = G721_32_SAMPLES_PER_BLOCK ; + break ; + + case G721_40_BITS_PER_SAMPLE : /* 5 bits per sample. */ + pstate->encoder = g723_40_encoder ; + *blocksize = G721_40_BYTES_PER_BLOCK ; + *samplesperblock = G721_40_SAMPLES_PER_BLOCK ; + pstate->codec_bits = 5 ; + pstate->blocksize = G721_40_BYTES_PER_BLOCK ; + pstate->samplesperblock = G721_40_SAMPLES_PER_BLOCK ; + break ; + + default : + free (pstate) ; + return NULL ; + } ; + + return pstate ; +} /* g72x_writer_init */ + +int g72x_decode_block (G72x_STATE *pstate, const unsigned char *block, short *samples) +{ int k, count ; + + count = unpack_bytes (pstate->codec_bits, pstate->blocksize, block, samples) ; + + for (k = 0 ; k < count ; k++) + samples [k] = pstate->decoder (samples [k], pstate) ; + + return 0 ; +} /* g72x_decode_block */ + +int g72x_encode_block (G72x_STATE *pstate, short *samples, unsigned char *block) +{ int k, count ; + + for (k = 0 ; k < pstate->samplesperblock ; k++) + samples [k] = pstate->encoder (samples [k], pstate) ; + + count = pack_bytes (pstate->codec_bits, samples, block) ; + + return count ; +} /* g72x_encode_block */ + +/* + * predictor_zero() + * + * computes the estimated signal from 6-zero predictor. + * + */ +int predictor_zero (G72x_STATE *state_ptr) +{ + int i; + int sezi; + + sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]); + for (i = 1; i < 6; i++) /* ACCUM */ + sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]); + return (sezi); +} +/* + * predictor_pole() + * + * computes the estimated signal from 2-pole predictor. + * + */ +int predictor_pole(G72x_STATE *state_ptr) +{ + return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) + + fmult(state_ptr->a[0] >> 2, state_ptr->sr[0])); +} +/* + * step_size() + * + * computes the quantization step size of the adaptive quantizer. + * + */ +int step_size (G72x_STATE *state_ptr) +{ + int y; + int dif; + int al; + + if (state_ptr->ap >= 256) + return (state_ptr->yu); + else { + y = state_ptr->yl >> 6; + dif = state_ptr->yu - y; + al = state_ptr->ap >> 2; + if (dif > 0) + y += (dif * al) >> 6; + else if (dif < 0) + y += (dif * al + 0x3F) >> 6; + return (y); + } +} + +/* + * quantize() + * + * Given a raw sample, 'd', of the difference signal and a + * quantization step size scale factor, 'y', this routine returns the + * ADPCM codeword to which that sample gets quantized. The step + * size scale factor division operation is done in the log base 2 domain + * as a subtraction. + */ +int quantize( + int d, /* Raw difference signal sample */ + int y, /* Step size multiplier */ + short *table, /* quantization table */ + int size) /* table size of short integers */ +{ + short dqm; /* Magnitude of 'd' */ + short expon; /* Integer part of base 2 log of 'd' */ + short mant; /* Fractional part of base 2 log */ + short dl; /* Log of magnitude of 'd' */ + short dln; /* Step size scale factor normalized log */ + int i; + + /* + * LOG + * + * Compute base 2 log of 'd', and store in 'dl'. + */ + dqm = abs(d); + expon = quan(dqm >> 1, power2, 15); + mant = ((dqm << 7) >> expon) & 0x7F; /* Fractional portion. */ + dl = (expon << 7) + mant; + + /* + * SUBTB + * + * "Divide" by step size multiplier. + */ + dln = dl - (y >> 2); + + /* + * QUAN + * + * Obtain codword i for 'd'. + */ + i = quan(dln, table, size); + if (d < 0) /* take 1's complement of i */ + return ((size << 1) + 1 - i); + else if (i == 0) /* take 1's complement of 0 */ + return ((size << 1) + 1); /* new in 1988 */ + else + return (i); +} +/* + * reconstruct() + * + * Returns reconstructed difference signal 'dq' obtained from + * codeword 'i' and quantization step size scale factor 'y'. + * Multiplication is performed in log base 2 domain as addition. + */ +int +reconstruct( + int sign, /* 0 for non-negative value */ + int dqln, /* G.72x codeword */ + int y) /* Step size multiplier */ +{ + short dql; /* Log of 'dq' magnitude */ + short dex; /* Integer part of log */ + short dqt; + short dq; /* Reconstructed difference signal sample */ + + dql = dqln + (y >> 2); /* ADDA */ + + if (dql < 0) { + return ((sign) ? -0x8000 : 0); + } else { /* ANTILOG */ + dex = (dql >> 7) & 15; + dqt = 128 + (dql & 127); + dq = (dqt << 7) >> (14 - dex); + return ((sign) ? (dq - 0x8000) : dq); + } +} + + +/* + * update() + * + * updates the state variables for each output code + */ +void +update( + int code_size, /* distinguish 723_40 with others */ + int y, /* quantizer step size */ + int wi, /* scale factor multiplier */ + int fi, /* for long/short term energies */ + int dq, /* quantized prediction difference */ + int sr, /* reconstructed signal */ + int dqsez, /* difference from 2-pole predictor */ + G72x_STATE *state_ptr) /* coder state pointer */ +{ + int cnt; + short mag, expon; /* Adaptive predictor, FLOAT A */ + short a2p = 0; /* LIMC */ + short a1ul; /* UPA1 */ + short pks1; /* UPA2 */ + short fa1; + char tr; /* tone/transition detector */ + short ylint, thr2, dqthr; + short ylfrac, thr1; + short pk0; + + pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */ + + mag = dq & 0x7FFF; /* prediction difference magnitude */ + /* TRANS */ + ylint = state_ptr->yl >> 15; /* exponent part of yl */ + ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */ + thr1 = (32 + ylfrac) << ylint; /* threshold */ + thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */ + dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */ + if (state_ptr->td == 0) /* signal supposed voice */ + tr = 0; + else if (mag <= dqthr) /* supposed data, but small mag */ + tr = 0; /* treated as voice */ + else /* signal is data (modem) */ + tr = 1; + + /* + * Quantizer scale factor adaptation. + */ + + /* FUNCTW & FILTD & DELAY */ + /* update non-steady state step size multiplier */ + state_ptr->yu = y + ((wi - y) >> 5); + + /* LIMB */ + if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */ + state_ptr->yu = 544; + else if (state_ptr->yu > 5120) + state_ptr->yu = 5120; + + /* FILTE & DELAY */ + /* update steady state step size multiplier */ + state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6); + + /* + * Adaptive predictor coefficients. + */ + if (tr == 1) { /* reset a's and b's for modem signal */ + state_ptr->a[0] = 0; + state_ptr->a[1] = 0; + state_ptr->b[0] = 0; + state_ptr->b[1] = 0; + state_ptr->b[2] = 0; + state_ptr->b[3] = 0; + state_ptr->b[4] = 0; + state_ptr->b[5] = 0; + } else { /* update a's and b's */ + pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */ + + /* update predictor pole a[1] */ + a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7); + if (dqsez != 0) { + fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0]; + if (fa1 < -8191) /* a2p = function of fa1 */ + a2p -= 0x100; + else if (fa1 > 8191) + a2p += 0xFF; + else + a2p += fa1 >> 5; + + if (pk0 ^ state_ptr->pk[1]) + { /* LIMC */ + if (a2p <= -12160) + a2p = -12288; + else if (a2p >= 12416) + a2p = 12288; + else + a2p -= 0x80; + } + else if (a2p <= -12416) + a2p = -12288; + else if (a2p >= 12160) + a2p = 12288; + else + a2p += 0x80; + } + + /* TRIGB & DELAY */ + state_ptr->a[1] = a2p; + + /* UPA1 */ + /* update predictor pole a[0] */ + state_ptr->a[0] -= state_ptr->a[0] >> 8; + if (dqsez != 0) + { if (pks1 == 0) + state_ptr->a[0] += 192; + else + state_ptr->a[0] -= 192; + } ; + + /* LIMD */ + a1ul = 15360 - a2p; + if (state_ptr->a[0] < -a1ul) + state_ptr->a[0] = -a1ul; + else if (state_ptr->a[0] > a1ul) + state_ptr->a[0] = a1ul; + + /* UPB : update predictor zeros b[6] */ + for (cnt = 0; cnt < 6; cnt++) { + if (code_size == 5) /* for 40Kbps G.723 */ + state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9; + else /* for G.721 and 24Kbps G.723 */ + state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8; + if (dq & 0x7FFF) { /* XOR */ + if ((dq ^ state_ptr->dq[cnt]) >= 0) + state_ptr->b[cnt] += 128; + else + state_ptr->b[cnt] -= 128; + } + } + } + + for (cnt = 5; cnt > 0; cnt--) + state_ptr->dq[cnt] = state_ptr->dq[cnt-1]; + /* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */ + if (mag == 0) { + state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20; + } else { + expon = quan(mag, power2, 15); + state_ptr->dq[0] = (dq >= 0) ? + (expon << 6) + ((mag << 6) >> expon) : + (expon << 6) + ((mag << 6) >> expon) - 0x400; + } + + state_ptr->sr[1] = state_ptr->sr[0]; + /* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */ + if (sr == 0) { + state_ptr->sr[0] = 0x20; + } else if (sr > 0) { + expon = quan(sr, power2, 15); + state_ptr->sr[0] = (expon << 6) + ((sr << 6) >> expon); + } else if (sr > -32768) { + mag = -sr; + expon = quan(mag, power2, 15); + state_ptr->sr[0] = (expon << 6) + ((mag << 6) >> expon) - 0x400; + } else + state_ptr->sr[0] = (short) 0xFC20; + + /* DELAY A */ + state_ptr->pk[1] = state_ptr->pk[0]; + state_ptr->pk[0] = pk0; + + /* TONE */ + if (tr == 1) /* this sample has been treated as data */ + state_ptr->td = 0; /* next one will be treated as voice */ + else if (a2p < -11776) /* small sample-to-sample correlation */ + state_ptr->td = 1; /* signal may be data */ + else /* signal is voice */ + state_ptr->td = 0; + + /* + * Adaptation speed control. + */ + state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */ + state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */ + + if (tr == 1) + state_ptr->ap = 256; + else if (y < 1536) /* SUBTC */ + state_ptr->ap += (0x200 - state_ptr->ap) >> 4; + else if (state_ptr->td == 1) + state_ptr->ap += (0x200 - state_ptr->ap) >> 4; + else if (abs((state_ptr->dms << 2) - state_ptr->dml) >= + (state_ptr->dml >> 3)) + state_ptr->ap += (0x200 - state_ptr->ap) >> 4; + else + state_ptr->ap += (-state_ptr->ap) >> 4; + + return ; +} /* update */ + +/*------------------------------------------------------------------------------ +*/ + +static int +unpack_bytes (int bits, int blocksize, const unsigned char * block, short * samples) +{ unsigned int in_buffer = 0 ; + unsigned char in_byte ; + int k, in_bits = 0, bindex = 0 ; + + for (k = 0 ; bindex <= blocksize && k < G72x_BLOCK_SIZE ; k++) + { if (in_bits < bits) + { in_byte = block [bindex++] ; + + in_buffer |= (in_byte << in_bits); + in_bits += 8; + } + samples [k] = in_buffer & ((1 << bits) - 1); + in_buffer >>= bits; + in_bits -= bits; + } ; + + return k ; +} /* unpack_bytes */ + +static int +pack_bytes (int bits, const short * samples, unsigned char * block) +{ + unsigned int out_buffer = 0 ; + int k, bindex = 0, out_bits = 0 ; + unsigned char out_byte ; + + for (k = 0 ; k < G72x_BLOCK_SIZE ; k++) + { out_buffer |= (samples [k] << out_bits) ; + out_bits += bits ; + if (out_bits >= 8) + { out_byte = out_buffer & 0xFF ; + out_bits -= 8 ; + out_buffer >>= 8 ; + block [bindex++] = out_byte ; + } + } ; + + return bindex ; +} /* pack_bytes */ +