X-Git-Url: https://scm.cri.ensmp.fr/git/Faustine.git/blobdiff_plain/1059e1cc0c2ecfa237406949aa26155b6a5b9154..66f23d4fabf89ad09adbd4dfc15ac6b5b2b7da83:/interpreter/preprocessor/faust-0.9.47mr3/architecture/music.lib diff --git a/interpreter/preprocessor/faust-0.9.47mr3/architecture/music.lib b/interpreter/preprocessor/faust-0.9.47mr3/architecture/music.lib new file mode 100644 index 0000000..c837389 --- /dev/null +++ b/interpreter/preprocessor/faust-0.9.47mr3/architecture/music.lib @@ -0,0 +1,377 @@ +/************************************************************************ + ************************************************************************ + FAUST library file + Copyright (C) 2003-2011 GRAME, Centre National de Creation Musicale + --------------------------------------------------------------------- + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU Lesser General Public License as + published by the Free Software Foundation; either version 2.1 of the + License, or (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, write to the Free + Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA + 02111-1307 USA. + ************************************************************************ + ************************************************************************/ + +declare name "Music Library"; +declare author "GRAME"; +declare copyright "GRAME"; +declare version "1.0"; +declare license "LGPL"; + +import("math.lib"); + +//----------------------------------------------- +// DELAY LINE +//----------------------------------------------- +frac(n) = n-int(n); +index(n) = &(n-1) ~ +(1); // n = 2**i +//delay(n,d,x) = rwtable(n, 0.0, index(n), x, (index(n)-int(d)) & (n-1)); +delay(n,d,x) = x@(int(d)&(n-1)); +fdelay(n,d,x) = delay(n,int(d),x)*(1 - frac(d)) + delay(n,int(d)+1,x)*frac(d); + + +delay1s(d) = delay(65536,d); +delay2s(d) = delay(131072,d); +delay5s(d) = delay(262144,d); +delay10s(d) = delay(524288,d); +delay21s(d) = delay(1048576,d); +delay43s(d) = delay(2097152,d); + +fdelay1s(d) = fdelay(65536,d); +fdelay2s(d) = fdelay(131072,d); +fdelay5s(d) = fdelay(262144,d); +fdelay10s(d) = fdelay(524288,d); +fdelay21s(d) = fdelay(1048576,d); +fdelay43s(d) = fdelay(2097152,d); + +millisec = SR/1000.0; + +time1s = hslider("time", 0, 0, 1000, 0.1)*millisec; +time2s = hslider("time", 0, 0, 2000, 0.1)*millisec; +time5s = hslider("time", 0, 0, 5000, 0.1)*millisec; +time10s = hslider("time", 0, 0, 10000, 0.1)*millisec; +time21s = hslider("time", 0, 0, 21000, 0.1)*millisec; +time43s = hslider("time", 0, 0, 43000, 0.1)*millisec; + + +echo1s = vgroup("echo 1000", +~(delay(65536, int(hslider("millisecond", 0, 0, 1000, 0.10)*millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0))); +echo2s = vgroup("echo 2000", +~(delay(131072, int(hslider("millisecond", 0, 0, 2000, 0.25)*millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0))); +echo5s = vgroup("echo 5000", +~(delay(262144, int(hslider("millisecond", 0, 0, 5000, 0.50)*millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0))); +echo10s = vgroup("echo 10000", +~(delay(524288, int(hslider("millisecond", 0, 0, 10000, 1.00)*millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0))); +echo21s = vgroup("echo 21000", +~(delay(1048576, int(hslider("millisecond", 0, 0, 21000, 1.00)*millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0))); +echo43s = vgroup("echo 43000", +~(delay(2097152, int(hslider("millisecond", 0, 0, 43000, 1.00)*millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0))); + + +//--------------------------sdelay(N,it,dt)---------------------------- +// s(mooth)delay : a mono delay that doesn't click and doesn't +// transpose when the delay time is changed. It takes 4 input signals +// and produces a delayed output signal +// +// USAGE : ... : sdelay(N,it,dt) : ... +// +// Where : +// = maximal delay in samples (must be a constant power of 2, for example 65536) +// = interpolation time (in samples) for example 1024 +//
= delay time (in samples) +// < > = input signal we want to delay +//-------------------------------------------------------------------------- + +sdelay(N, it, dt) = ctrl(it,dt),_ : ddi(N) + + with { + + //---------------------------ddi(N,i,d0,d1)------------------------------- + // DDI (Double Delay with Interpolation) : the input signal is sent to two + // delay lines. The outputs of these delay lines are crossfaded with + // an interpolation stage. By acting on this interpolation value one + // can move smoothly from one delay to another. When is 0 we can + // freely change the delay time of line 1, when it is 1 we can freely change + // the delay time of line 0. + // + // = maximal delay in samples (must be a power of 2, for example 65536) + // = interpolation value between 0 and 1 used to crossfade the outputs of the + // two delay lines (0.0: first delay line, 1.0: second delay line) + // = delay time of delay line 0 in samples between 0 and -1 + // = delay time of delay line 1 in samples between 0 and -1 + // < > = the input signal we want to delay + //------------------------------------------------------------------------- + ddi(N, i, d0, d1) = _ <: delay(N,d0), delay(N,d1) : interpolate(i); + + + //----------------------------ctrl(it,dt)------------------------------------ + // Control logic for a Double Delay with Interpolation according to two + // + // USAGE : ctrl(it,dt) + // where : + // an interpolation time (in samples, for example 256) + //
a delay time (in samples) + // + // ctrl produces 3 outputs : an interpolation value and two delay + // times and . These signals are used to control a ddi (Double Delay with Interpolation). + // The principle is to detect changes in the input delay time dt, then to + // change the delay time of the delay line currently unused and then by a + // smooth crossfade to remove the first delay line and activate the second one. + // + // The control logic has an internal state controlled by 4 elements + // : the interpolation variation (0, 1/it, -1/it) + // : the interpolation value (between 0 and 1) + // : the delay time of line 0 + // : the delay time of line 1 + // + // Please note that the last stage (!,_,_,_) cut because it is only + // used internally. + //------------------------------------------------------------------------- + ctrl(it, dt) = \(v,ip,d0,d1).( (nv, nip, nd0, nd1) + with { + + // interpolation variation + nv = if (v!=0.0, // if variation we are interpolating + if( (ip>0.0) & (ip<1.0), v , 0), // should we continue or not ? + if ((ip==0.0) & (dt!=d0), 1.0/it, // if true xfade from dl0 to dl1 + if ((ip==1.0) & (dt!=d1), -1.0/it, // if true xfade from dl1 to dl0 + 0))); // nothing to change + // interpolation value + nip = ip+nv : min(1.0) : max(0.0); + + // update delay time of line 0 if needed + nd0 = if ((ip >= 1.0) & (d1!=dt), dt, d0); + + // update delay time of line 0 if needed + nd1 = if ((ip <= 0.0) & (d0!=dt), dt, d1); + + } ) ~ (_,_,_,_) : (!,_,_,_); + }; + + + + +//----------------------------------------------- +// Tempo, beats and pulses +//----------------------------------------------- + +tempo(t) = (60*SR)/t; // tempo(t) -> samples + +period(p) = %(int(p))~+(1); // signal en dent de scie de periode p +pulse(t) = period(t)==0; // pulse (10000...) de periode p +pulsen(n,t) = period(t)0. +//----------------------------------------------- + +multirandom(n) = randomize(n) ~_ +with { + randomize (1) = +(12345) : *(1103515245); + randomize (n) = randomize(1) <: randomize(n-1),_; +}; + + +//----------------------------------------------- +// Generates multiple decorrelated noises +// in parallel. Expects n>0. +//----------------------------------------------- + +multinoise(n) = multirandom(n) : par(i,n,/(RANDMAX)) +with { + RANDMAX = 2147483647.0; +}; + + +//------------------------------------------------ + +noises(N,i) = multinoise(N) : selector(i,N); + + +//----------------------------------------------- +// osc(freq) : Sinusoidal Oscillator +//----------------------------------------------- + +tablesize = 1 << 16; +samplingfreq = SR; + +time = (+(1)~_ ) - 1; // 0,1,2,3,... +sinwaveform = float(time)*(2.0*PI)/float(tablesize) : sin; + +decimal(x) = x - floor(x); +phase(freq) = freq/float(samplingfreq) : (+ : decimal) ~ _ : *(float(tablesize)); +osc(freq) = rdtable(tablesize, sinwaveform, int(phase(freq)) ); +osci(freq) = s1 + d * (s2 - s1) + with { + i = int(phase(freq)); + d = decimal(phase(freq)); + s1 = rdtable(tablesize+1,sinwaveform,i); + s2 = rdtable(tablesize+1,sinwaveform,i+1);}; + + +//----------------------------------------------- +// ADSR envelop +//----------------------------------------------- + +// a,d,s,r = attack (#samples), decay (sec), sustain (percentage), release (sec) +// t = trigger signal + +adsr(a,d,s,r,t) = env ~ (_,_) : (!,_) // the 2 'state' signals are fed back +with { + env (p2,y) = + (t>0) & (p2|(y>=1)), // p2 = decay-sustain phase + (y + p1*u - (p2&(y>s))*v*y - p3*w*y) // y = envelop signal + *((p3==0)|(y>=eps)) // cut off tails to prevent denormals + with { + p1 = (p2==0) & (t>0) & (y<1); // p1 = attack phase + p3 = (t<=0) & (y>0); // p3 = release phase + // #samples in attack, decay, release, must be >0 + na = SR*a+(a==0.0); nd = SR*d+(d==0.0); nr = SR*r+(r==0.0); + // correct zero sustain level + z = s+(s==0.0)*db2linear(-60); + // attack, decay and (-60dB) release rates + u = 1/na; v = 1-pow(z, 1/nd); w = 1-1/pow(z*db2linear(60), 1/nr); + // values below this threshold are considered zero in the release phase + eps = db2linear(-120); + }; +}; + + +//----------------------------------------------- +// Spatialisation +//----------------------------------------------- + +panner(c) = _ <: *(1-c), *(c); + +bus2 = _,_; +bus3 = _,_,_; +bus4 = _,_,_,_; +bus5 = _,_,_,_,_; +bus6 = _,_,_,_,_,_; +bus7 = _,_,_,_,_,_,_; +bus8 = _,_,_,_,_,_,_,_; + +gain2(g) = *(g),*(g); +gain3(g) = *(g),*(g),*(g); +gain4(g) = *(g),*(g),*(g),*(g); +gain5(g) = *(g),*(g),*(g),*(g),*(g); +gain6(g) = *(g),*(g),*(g),*(g),*(g),*(g); +gain7(g) = *(g),*(g),*(g),*(g),*(g),*(g),*(g); +gain8(g) = *(g),*(g),*(g),*(g),*(g),*(g),*(g),*(g); + + +//------------------------------------------------------ +// +// GMEM SPAT +// n-outputs spatializer +// implementation of L. Pottier +// +//------------------------------------------------------ +// +// n = number of outputs +// r = rotation (between 0 et 1) +// d = distance of the source (between 0 et 1) +// +//------------------------------------------------------ +spat(n,a,d) = _ <: par(i, n, *( scaler(i, n, a, d) : smooth(0.9999) )) + with { + scaler(i,n,a,d) = (d/2.0+0.5) + * sqrt( max(0.0, 1.0 - abs(fmod(a+0.5+float(n-i)/n, 1.0) - 0.5) * n * d) ); + smooth(c) = *(1-c) : +~*(c); + }; + + + +//--------------- Second Order Generic Transfert Function ------------------------- +// TF2(b0,b1,b2,a1,a2) +// +//--------------------------------------------------------------------------------- + +TF2(b0,b1,b2,a1,a2) = sub ~ conv2(a1,a2) : conv3(b0,b1,b2) + with { + conv3(k0,k1,k2,x) = k0*x + k1*x' + k2*x''; + conv2(k0,k1,x) = k0*x + k1*x'; + sub(x,y) = y-x; + }; + + +/*************************** Break Point Functions *************************** + +bpf is an environment (a group of related definitions) tha can be used to +create break-point functions. It contains three functions : + - start(x,y) to start a break-point function + - end(x,y) to end a break-point function + - point(x,y) to add intermediate points to a break-point function + +A minimal break-point function must contain at least a start and an end point : + + f = bpf.start(x0,y0) : bpf.end(x1,y1); + +A more involved break-point function can contains any number of intermediate +points + + f = bpf.start(x0,y0) : bpf.point(x1,y1) : bpf.point(x2,y2) : bpf.end(x3,y3); + +In any case the x_{i} must be in increasing order (for all i, x_{i} < x_{i+1}) + +For example the following definition : + + f = bpf.start(x0,y0) : ... : bpf.point(xi,yi) : ... : bpf.end(xn,yn); + +implements a break-point function f such that : + + f(x) = y_{0} when x < x_{0} + f(x) = y_{n} when x > x_{n} + f(x) = y_{i} + (y_{i+1}-y_{i})*(x-x_{i})/(x_{i+1}-x_{i}) when x_{i} <= x and x < x_{i+1} + +******************************************************************************/ + +bpf = environment +{ + // Start a break-point function + start(x0,y0) = \(x).(x0,y0,x,y0); + + // Add a break-point + point(x1,y1) = \(x0,y0,x,y).(x1, y1, x , if (x < x0, y, if (x < x1, y0 + (x-x0)*(y1-y0)/(x1-x0), y1))); + + // End a break-point function + end (x1,y1) = \(x0,y0,x,y).(if (x < x0, y, if (x < x1, y0 + (x-x0)*(y1-y0)/(x1-x0), y1))); + + // definition of if + if (c,t,e) = select2(c,e,t); +}; + + +