X-Git-Url: https://scm.cri.ensmp.fr/git/Faustine.git/blobdiff_plain/1059e1cc0c2ecfa237406949aa26155b6a5b9154..66f23d4fabf89ad09adbd4dfc15ac6b5b2b7da83:/interpreter/preprocessor/faust-0.9.47mr3/examples/faust-stk/flutestk.dsp diff --git a/interpreter/preprocessor/faust-0.9.47mr3/examples/faust-stk/flutestk.dsp b/interpreter/preprocessor/faust-0.9.47mr3/examples/faust-stk/flutestk.dsp new file mode 100644 index 0000000..7f74a21 --- /dev/null +++ b/interpreter/preprocessor/faust-0.9.47mr3/examples/faust-stk/flutestk.dsp @@ -0,0 +1,121 @@ +declare name "FluteSTK"; +declare description "Nonlinear WaveGuide Flute from STK"; +declare author "Romain Michon"; +declare copyright "Romain Michon (rmichon@ccrma.stanford.edu)"; +declare version "1.0"; +declare licence "STK-4.3"; // Synthesis Tool Kit 4.3 (MIT style license); +declare description "A simple flute physical model, as discussed by Karjalainen, Smith, Waryznyk, etc. The jet model uses a polynomial, a la Cook."; +declare reference "https://ccrma.stanford.edu/~jos/pasp/Flutes_Recorders_Pipe_Organs.html"; + +import("music.lib"); +import("instrument.lib"); + +//==================== GUI SPECIFICATION ================ + +freq = nentry("h:Basic_Parameters/freq [1][unit:Hz] [tooltip:Tone frequency]",440,20,20000,1); +gain = nentry("h:Basic_Parameters/gain [1][tooltip:Gain (value between 0 and 1)]",1,0,1,0.01); +gate = button("h:Basic_Parameters/gate [1][tooltip:noteOn = 1, noteOff = 0]"); + +embouchureAjust = hslider("h:Physical_and_Nonlinearity/v:Physical_Parameters/Embouchure_Ajust +[2][tooltip:A value between 0 and 1]",0.5,0,1,0.01); +noiseGain = hslider("h:Physical_and_Nonlinearity/v:Physical_Parameters/Noise_Gain +[2][tooltip:A value between 0 and 1]",0.03,0,1,0.01); +pressure = hslider("h:Physical_and_Nonlinearity/v:Physical_Parameters/Pressure +[2][tooltip:Breath pressure (value between 0 and 1)]",1,0,1,0.01); + +typeModulation = nentry("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Modulation_Type +[3][tooltip: 0=theta is modulated by the incoming signal; 1=theta is modulated by the averaged incoming signal; +2=theta is modulated by the squared incoming signal; 3=theta is modulated by a sine wave of frequency freqMod; +4=theta is modulated by a sine wave of frequency freq;]",0,0,4,1); +nonLinearity = hslider("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Nonlinearity +[3][tooltip:Nonlinearity factor (value between 0 and 1)]",0,0,1,0.01); +frequencyMod = hslider("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Modulation_Frequency +[3][unit:Hz][tooltip:Frequency of the sine wave for the modulation of theta (works if Modulation Type=3)]",220,20,1000,0.1); +nonLinAttack = hslider("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Nonlinearity_Attack +[3][unit:s][Attack duration of the nonlinearity]",0.1,0,2,0.01); + +vibratoFreq = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Freq +[4][unit:Hz]",6,1,15,0.1); +vibratoGain = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Gain +[4][tooltip:A value between 0 and 1]",0.05,0,1,0.01); +vibratoBegin = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Begin +[4][unit:s][tooltip:Vibrato silence duration before attack]",0.05,0,2,0.01); +vibratoAttack = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Attack +[4][unit:s][tooltip:Vibrato attack duration]",0.5,0,2,0.01); +vibratoRelease = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Release +[4][unit:s][tooltip:Vibrato release duration]",0.1,0,2,0.01); + +envelopeAttack = hslider("h:Envelopes_and_Vibrato/v:Envelope_Parameters/Envelope_Attack +[5][unit:s][tooltip:Envelope attack duration]",0.03,0,2,0.01); +envelopeDecay = hslider("h:Envelopes_and_Vibrato/v:Envelope_Parameters/Envelope_Decay +[5][unit:s][tooltip:Envelope decay duration]",0.01,0,2,0.01); +envelopeRelease = hslider("h:Envelopes_and_Vibrato/v:Envelope_Parameters/Envelope_Release +[5][unit:s][tooltip:Envelope release duration]",0.3,0,2,0.01); + +//==================== SIGNAL PROCESSING ================ + +//----------------------- Nonlinear filter ---------------------------- +//nonlinearities are created by the nonlinear passive allpass ladder filter declared in filter.lib + +//nonlinear filter order +nlfOrder = 6; + +//attack - sustain - release envelope for nonlinearity (declared in instrument.lib) +envelopeMod = asr(nonLinAttack,100,envelopeRelease,gate); + +//nonLinearModultor is declared in instrument.lib, it adapts allpassnn from filter.lib +//for using it with waveguide instruments +NLFM = nonLinearModulator((nonLinearity : smooth(0.999)),envelopeMod,freq, + typeModulation,(frequencyMod : smooth(0.999)),nlfOrder); + +//----------------------- Synthesis parameters computing and functions declaration ---------------------------- + +jetReflexion = 0.5; +//jetRatio = 0.08 + (0.48*embouchureAjust); //original stk function +jetRatio = 1+(0.5-embouchureAjust); //corrected function +endReflexion = 0.5; + +//Delay lines lengths in number of samples +//jetDelayLength = (SR/freq-2)*jetRatio; //original stk function for jet delay length +jetDelayLength = (SR/(freq*2)-2)*jetRatio; //corrected function for jet delay length +boreDelayLength = SR/(freq*2)-2; //original function for bore delay length +//boreDelayLength = SR/(freq)-2; //corrected function for bore delay length +filterPole = 0.7 - (0.1*22050/SR); + +//One Pole Filter (declared in instrument.lib) +onePoleFilter = _*gain : onePole(b0,a1) + with{ + gain = -1; + pole = 0.7 - (0.1*22050/SR); + b0 = 1 - pole; + a1 = -pole; + }; + +//stereoizer is declared in instrument.lib and implement a stereo spacialisation in function of +//the frequency period in number of samples +stereo = stereoizer(SR/freq); + +//----------------------- Algorithm implementation ---------------------------- + +//the vibrato amplitude is controled by an envelope generator (declared in instrument.lib) +vibrato = vibratoGain*envVibrato(vibratoBegin,vibratoAttack,100,vibratoRelease,gate)*osc(vibratoFreq); + +//Breath pressure is controlled by an Attack / Decay / Sustain / Release envelope +envelopeBreath = pressure*adsr(pressure*envelopeAttack,envelopeDecay,80,envelopeRelease,gate); +breathPressure = envelopeBreath + envelopeBreath*(noiseGain*noise + vibrato) + 10.0^(-15.0); + +//delay lines +jetDelay = fdelay(4096,jetDelayLength); +boreDelay = fdelay(4096,boreDelayLength); + +//reflexion filter is a one pole and a dcblocker +reflexionFilters = onePoleFilter : dcblocker; + +process = + (reflexionFilters <: + //Differential Pressure + ((breathPressure - _*jetReflexion) : + jetDelay : jetTable) + (_*endReflexion)) ~ (boreDelay : NLFM) : + //output scaling and stereo signal + *(0.3*gain) : stereo : instrReverb; +