X-Git-Url: https://scm.cri.ensmp.fr/git/Faustine.git/blobdiff_plain/1059e1cc0c2ecfa237406949aa26155b6a5b9154..66f23d4fabf89ad09adbd4dfc15ac6b5b2b7da83:/interpreter/preprocessor/faust-0.9.47mr3/tools/faust2pd/examples/synth/amp.dsp diff --git a/interpreter/preprocessor/faust-0.9.47mr3/tools/faust2pd/examples/synth/amp.dsp b/interpreter/preprocessor/faust-0.9.47mr3/tools/faust2pd/examples/synth/amp.dsp new file mode 100644 index 0000000..0b3333a --- /dev/null +++ b/interpreter/preprocessor/faust-0.9.47mr3/tools/faust2pd/examples/synth/amp.dsp @@ -0,0 +1,108 @@ + +/* Stereo amplifier stage with bass, treble, gain and balance controls and a + dB meter. */ + +declare name "amp -- stereo amplifier stage"; +declare author "Albert Graef"; +declare version "1.0"; + +import("math.lib"); +import("music.lib"); + +/* Fixed bass and treble frequencies. You might want to tune these for your + setup. */ + +bass_freq = 300; +treble_freq = 1200; + +/* Bass and treble gain controls in dB. The range of +/-20 corresponds to a + boost/cut factor of 10. */ + +bass_gain = nentry("bass", 0, -20, 20, 0.1); +treble_gain = nentry("treble", 0, -20, 20, 0.1); + +/* Gain and balance controls. */ + +gain = db2linear(nentry("gain", 0, -96, 96, 0.1)); +bal = hslider("balance", 0, -1, 1, 0.001); + +/* Balance a stereo signal by attenuating the left channel if balance is on + the right and vice versa. I found that a linear control works best here. */ + +balance = *(1-max(0,bal)), *(1-max(0,0-bal)); + +/* Generic biquad filter. */ + +filter(b0,b1,b2,a0,a1,a2) = f : (+ ~ g) +with { + f(x) = (b0/a0)*x+(b1/a0)*x'+(b2/a0)*x''; + g(y) = 0-(a1/a0)*y-(a2/a0)*y'; +}; + +/* Low and high shelf filters, straight from Robert Bristow-Johnson's "Audio + EQ Cookbook", see http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt. f0 + is the shelf midpoint frequency, g the desired gain in dB. S is the shelf + slope parameter, we always set that to 1 here. */ + +low_shelf(f0,g) = filter(b0,b1,b2,a0,a1,a2) +with { + S = 1; + A = pow(10,g/40); + w0 = 2*PI*f0/SR; + alpha = sin(w0)/2 * sqrt( (A + 1/A)*(1/S - 1) + 2 ); + + b0 = A*( (A+1) - (A-1)*cos(w0) + 2*sqrt(A)*alpha ); + b1 = 2*A*( (A-1) - (A+1)*cos(w0) ); + b2 = A*( (A+1) - (A-1)*cos(w0) - 2*sqrt(A)*alpha ); + a0 = (A+1) + (A-1)*cos(w0) + 2*sqrt(A)*alpha; + a1 = -2*( (A-1) + (A+1)*cos(w0) ); + a2 = (A+1) + (A-1)*cos(w0) - 2*sqrt(A)*alpha; +}; + +high_shelf(f0,g) = filter(b0,b1,b2,a0,a1,a2) +with { + S = 1; + A = pow(10,g/40); + w0 = 2*PI*f0/SR; + alpha = sin(w0)/2 * sqrt( (A + 1/A)*(1/S - 1) + 2 ); + + b0 = A*( (A+1) + (A-1)*cos(w0) + 2*sqrt(A)*alpha ); + b1 = -2*A*( (A-1) + (A+1)*cos(w0) ); + b2 = A*( (A+1) + (A-1)*cos(w0) - 2*sqrt(A)*alpha ); + a0 = (A+1) - (A-1)*cos(w0) + 2*sqrt(A)*alpha; + a1 = 2*( (A-1) - (A+1)*cos(w0) ); + a2 = (A+1) - (A-1)*cos(w0) - 2*sqrt(A)*alpha; +}; + +/* The tone control. We simply run a low and a high shelf in series here. */ + +tone = low_shelf(bass_freq,bass_gain) + : high_shelf(treble_freq,treble_gain); + +/* Envelop follower. This is basically a 1 pole LP with configurable attack/ + release time. The result is converted to dB. You have to set the desired + attack/release time in seconds using the t parameter below. */ + +t = 0.1; // attack/release time in seconds +g = exp(-1/(SR*t)); // corresponding gain factor + +env = abs : *(1-g) : + ~ *(g) : linear2db; + +/* Use this if you want the RMS instead. Note that this doesn't really + calculate an RMS value (you'd need an FIR for that), but in practice our + simple 1 pole IIR filter works just as well. */ + +rms = sqr : *(1-g) : + ~ *(g) : sqrt : linear2db; +sqr(x) = x*x; + +/* The dB meters for left and right channel. These are passive controls. */ + +left_meter(x) = attach(x, env(x) : hbargraph("left", -96, 10)); +right_meter(x) = attach(x, env(x) : hbargraph("right", -96, 10)); + +/* The main program. */ + +process = hgroup("0-amp", hgroup("1-tone", tone, tone) : + hgroup("2-gain", (_*gain, _*gain))) + : vgroup("3-balance", balance) + : vgroup("4-meter", (left_meter, right_meter));