X-Git-Url: https://scm.cri.ensmp.fr/git/Faustine.git/blobdiff_plain/1059e1cc0c2ecfa237406949aa26155b6a5b9154..66f23d4fabf89ad09adbd4dfc15ac6b5b2b7da83:/interpretor/preprocessor/faust-0.9.47mr3/architecture/effect.lib diff --git a/interpretor/preprocessor/faust-0.9.47mr3/architecture/effect.lib b/interpretor/preprocessor/faust-0.9.47mr3/architecture/effect.lib deleted file mode 100644 index 0bd634b..0000000 --- a/interpretor/preprocessor/faust-0.9.47mr3/architecture/effect.lib +++ /dev/null @@ -1,1356 +0,0 @@ -declare name "Faust Audio Effect Library"; -declare author "Julius O. Smith (jos at ccrma.stanford.edu)"; -declare copyright "Julius O. Smith III"; -declare version "1.33"; -declare license "STK-4.3"; // Synthesis Tool Kit 4.3 (MIT style license) -declare reference "https://ccrma.stanford.edu/realsimple/faust_strings/"; - -import("filter.lib"); // dcblocker*, lowpass, filterbank, ... - -// The following utilities (or equivalents) could go in music.lib: - -//----------------------- midikey2hz,pianokey2hz ------------------------ -midikey2hz(x) = 440.0*pow(2.0, (x-69.0)/12); // MIDI key 69 = A440 -pianokey2hz(x) = 440.0*pow(2.0, (x-49.0)/12); // piano key 49 = A440 - -//---------------- cross2, bypass1, bypass2, select2stereo -------------- -// -cross2 = _,_,_,_ <: _,!,_,!,!,_,!,_; - -bypass1(bpc,e) = _ <: select2(bpc,(inswitch:e),_) - with {inswitch = select2(bpc,_,0);}; - -bypass2(bpc,e) = _,_ <: ((inswitch:e),_,_) : select2stereo(bpc) with { - inswitch = _,_ : (select2(bpc,_,0), select2(bpc,_,0)) : _,_; -}; - -select2stereo(bpc) = cross2 : select2(bpc), select2(bpc) : _,_; - -//---------------------- levelfilter, levelfilterN ---------------------- -// Dynamic level lowpass filter: -// -// USAGE: levelfilter(L,freq), where -// L = desired level (in dB) at Nyquist limit (SR/2), e.g., -60 -// freq = corner frequency (-3dB point) usually set to fundamental freq -// -// REFERENCE: -// https://ccrma.stanford.edu/realsimple/faust_strings/Dynamic_Level_Lowpass_Filter.html -// -levelfilter(L,freq,x) = (L * L0 * x) + ((1.0-L) * lp2out(x)) -with { - L0 = pow(L,1/3); - Lw = PI*freq/SR; // = w1 T / 2 - Lgain = Lw / (1.0 + Lw); - Lpole2 = (1.0 - Lw) / (1.0 + Lw); - lp2out = *(Lgain) : + ~ *(Lpole2); -}; - -levelfilterN(N,freq,L) = seq(i,N,levelfilter((L/N),freq)); - -//------------------------- speakerbp ------------------------------- -// Dirt-simple speaker simulator (overall bandpass eq with observed -// roll-offs above and below the passband). -// -// Low-frequency speaker model = +12 dB/octave slope breaking to -// flat near f1. Implemented using two dc blockers in series. -// -// High-frequency model = -24 dB/octave slope implemented using a -// fourth-order Butterworth lowpass. -// -// Example based on measured Celestion G12 (12" speaker): -// speakerbp(130,5000); -// -// Requires filter.lib -// -speakerbp(f1,f2) = dcblockerat(f1) : dcblockerat(f1) : lowpass(4,f2); - - -//--------------------- cubicnl(drive,offset) ----------------------- -// Cubic nonlinearity distortion -// -// USAGE: cubicnl(drive,offset), where -// drive = distortion amount, between 0 and 1 -// offset = constant added before nonlinearity to give even harmonics -// Note: offset can introduce a nonzero mean - feed -// cubicnl output to dcblocker to remove this. -// -// REFERENCES: -// https://ccrma.stanford.edu/~jos/pasp/Cubic_Soft_Clipper.html -// https://ccrma.stanford.edu/~jos/pasp/Nonlinear_Distortion.html -// -cubicnl(drive,offset) = *(pregain) : +(offset) : clip(-1,1) : cubic -with { - pregain = pow(10.0,2*drive); - clip(lo,hi) = min(hi) : max(lo); - cubic(x) = x - x*x*x/3; - postgain = max(1.0,1.0/pregain); // unity gain when nearly linear -}; - -cubicnl_nodc(drive,offset) = cubicnl(drive,offset) : dcblocker; - -//--------------------------- cubicnl_demo -------------------------- -// USAGE: _ : cubicnl_demo : _; -// -cubicnl_demo = bypass1(bp, - cubicnl_nodc(drive:smooth(0.999),offset:smooth(0.999))) -with { - cnl_group(x) = vgroup("CUBIC NONLINEARITY cubicnl - [tooltip: Reference: - https://ccrma.stanford.edu/~jos/pasp/Cubic_Soft_Clipper.html]", x); -// bypass_group(x) = cnl_group(hgroup("[0]", x)); - slider_group(x) = cnl_group(hgroup("[1]", x)); -// bp = bypass_group(checkbox("[0] Bypass - bp = slider_group(checkbox("[0] Bypass - [tooltip: When this is checked, the nonlinearity has no effect]")); -// drive = slider_group(vslider("[1] Drive [style: knob] - drive = slider_group(hslider("[1] Drive - [tooltip: Amount of distortion]", - 0, 0, 1, 0.01)); -// offset = slider_group(vslider("[2] Offset [style: knob] - offset = slider_group(hslider("[2] Offset - [tooltip: Brings in even harmonics]", - 0, 0, 1, 0.01)); -}; - -//------------------------- moog_vcf(res,fr) --------------------------- -// Moog "Voltage Controlled Filter" (VCF) in "analog" form -// -// USAGE: moog_vcf(res,fr), where -// fr = corner-resonance frequency in Hz ( less than SR/6.3 or so ) -// res = Normalized amount of corner-resonance between 0 and 1 -// (0 is no resonance, 1 is maximum) -// Requires filter.lib. -// -// DESCRIPTION: Moog VCF implemented using the same logical block diagram -// as the classic analog circuit. As such, it neglects the one-sample -// delay associated with the feedback path around the four one-poles. -// This extra delay alters the response, especially at high frequencies -// (see reference [1] for details). -// See moog_vcf_2b below for a more accurate implementation. -// -// REFERENCES: -// [1] https://ccrma.stanford.edu/~stilti/papers/moogvcf.pdf -// [2] https://ccrma.stanford.edu/~jos/pasp/vegf.html -// -moog_vcf(res,fr) = (+ : seq(i,4,pole(p)) : *(unitygain(p))) ~ *(mk) -with { - p = 1.0 - fr * 2.0 * PI / SR; // good approximation for fr << SR - unitygain(p) = pow(1.0-p,4.0); // one-pole unity-gain scaling - mk = -4.0*max(0,min(res,0.999999)); // need mk > -4 for stability -}; - -//----------------------- moog_vcf_2b[n] --------------------------- -// Moog "Voltage Controlled Filter" (VCF) as two biquads -// -// USAGE: -// moog_vcf_2b(res,fr) -// moog_vcf_2bn(res,fr) -// where -// fr = corner-resonance frequency in Hz -// res = Normalized amount of corner-resonance between 0 and 1 -// (0 is min resonance, 1 is maximum) -// -// DESCRIPTION: Implementation of the ideal Moog VCF transfer -// function factored into second-order sections. As a result, it is -// more accurate than moog_vcf above, but its coefficient formulas are -// more complex when one or both parameters are varied. Here, res -// is the fourth root of that in moog_vcf, so, as the sampling rate -// approaches infinity, moog_vcf(res,fr) becomes equivalent -// to moog_vcf_2b[n](res^4,fr) (when res and fr are constant). -// -// moog_vcf_2b uses two direct-form biquads (tf2) -// moog_vcf_2bn uses two protected normalized-ladder biquads (tf2np) -// -// REQUIRES: filter.lib -// -moog_vcf_2b(res,fr) = tf2s(0,0,b0,a11,a01,w1) : tf2s(0,0,b0,a12,a02,w1) -with { - s = 1; // minus the open-loop location of all four poles - frl = max(20,min(10000,fr)); // limit fr to reasonable 20-10k Hz range - w1 = 2*PI*frl; // frequency-scaling parameter for bilinear xform - // Equivalent: w1 = 1; s = 2*PI*frl; - kmax = sqrt(2)*0.999; // 0.999 gives stability margin (tf2 is unprotected) - k = min(kmax,sqrt(2)*res); // fourth root of Moog VCF feedback gain - b0 = s^2; - s2k = sqrt(2) * k; - a11 = s * (2 + s2k); - a12 = s * (2 - s2k); - a01 = b0 * (1 + s2k + k^2); - a02 = b0 * (1 - s2k + k^2); -}; - -moog_vcf_2bn(res,fr) = tf2snp(0,0,b0,a11,a01,w1) : tf2snp(0,0,b0,a12,a02,w1) -with { - s = 1; // minus the open-loop location of all four poles - w1 = 2*PI*max(fr,20); // frequency-scaling parameter for bilinear xform - k = sqrt(2)*0.999*res; // fourth root of Moog VCF feedback gain - b0 = s^2; - s2k = sqrt(2) * k; - a11 = s * (2 + s2k); - a12 = s * (2 - s2k); - a01 = b0 * (1 + s2k + k^2); - a02 = b0 * (1 - s2k + k^2); -}; - -//------------------------- moog_vcf_demo --------------------------- -// Illustrate and compare all three Moog VCF implementations above -// (called by /examples/vcf_wah_pedals.dsp). -// -// USAGE: _ : moog_vcf_demo : _; - -moog_vcf_demo = bypass1(bp,vcf) with { - mvcf_group(x) = hgroup("MOOG VCF (Voltage Controlled Filter) - [tooltip: See Faust's effect.lib for info and references]",x); - - meter_group(x) = mvcf_group(vgroup("[0]",x)); - cb_group(x) = meter_group(hgroup("[0]",x)); - - bp = cb_group(checkbox("[0] Bypass [tooltip: When this is checked, the Moog VCF has no effect]")); - archsw = cb_group(checkbox("[1] Use Biquads - [tooltip: Select moog_vcf_2b (two-biquad) implementation, instead of the default moog_vcf (analog style) implementation]")); - bqsw = cb_group(checkbox("[2] Normalized Ladders - [tooltip: If using biquads, make them normalized ladders (moog_vcf_2bn)]")); - - freq = mvcf_group(hslider("[1] Corner Frequency [unit:PK] [style:knob] - [tooltip: The VCF resonates at the corner frequency (specified in PianoKey (PK) units, with A440 = 49 PK). The VCF response is flat below the corner frequency, and rolls off -24 dB per octave above.]", - 25, 1, 88, 0.01) : pianokey2hz) : smooth(0.999); - - res = mvcf_group(hslider("[2] Corner Resonance [style:knob] - [tooltip: Amount of resonance near VCF corner frequency (specified between 0 and 1)]", - 0.9, 0, 1, 0.01)); - - outgain = meter_group(hslider("[1] VCF Output Level [unit:dB] - [tooltip: output level in decibels]", - 5, -60, 20, 0.1)) : smooth(0.999) - : component("music.lib").db2linear; - - vcfbq = _ <: select2(bqsw, moog_vcf_2b(res,freq), moog_vcf_2bn(res,freq)); - vcfarch = _ <: select2(archsw, moog_vcf(res^4,freq), vcfbq); - vcf = vcfarch : *(outgain); -}; - -//-------------------------- wah4(fr) ------------------------------- -// Wah effect, 4th order -// USAGE: wah4(fr), where fr = resonance frequency in Hz -// REFERENCE "https://ccrma.stanford.edu/~jos/pasp/vegf.html"; -// -wah4(fr) = 4*moog_vcf((3.2/4),fr:smooth(0.999)); - -//------------------------- wah4_demo --------------------------- -// USAGE: _ : wah4_demo : _; - -wah4_demo = bypass1(bp, wah4(fr)) with { - wah4_group(x) = hgroup("WAH4 - [tooltip: Fourth-order wah effect made using moog_vcf]", x); - bp = wah4_group(checkbox("[0] Bypass - [tooltip: When this is checked, the wah pedal has no effect]")); - fr = wah4_group(hslider("[1] Resonance Frequency - [tooltip: wah resonance frequency in Hz]", - 200,100,2000,1)); -// Avoid dc with the moog_vcf (amplitude too high when freq comes up from dc) -// Also, avoid very high resonance frequencies (e.g., 5kHz or above). -}; - -//------------------------ autowah(level) ----------------------------- -// Auto-wah effect -// USAGE: _ : autowah(level) : _; -// where level = amount of effect desired (0 to 1). -// -autowah(level,x) = level * crybaby(amp_follower(0.1,x),x) + (1.0-level)*x; - -//-------------------------- crybaby(wah) ----------------------------- -// Digitized CryBaby wah pedal -// USAGE: _ : crybaby(wah) : _; -// where wah = "pedal angle" from 0 to 1. -// REFERENCE: https://ccrma.stanford.edu/~jos/pasp/vegf.html -// -crybaby(wah) = *(gs) : tf2(1,-1,0,a1s,a2s) -with { - Q = pow(2.0,(2.0*(1.0-wah)+1.0)); // Resonance "quality factor" - fr = 450.0*pow(2.0,2.3*wah); // Resonance tuning - g = 0.1*pow(4.0,wah); // gain (optional) - - // Biquad fit using z = exp(s T) ~ 1 + sT for low frequencies: - frn = fr/SR; // Normalized pole frequency (cycles per sample) - R = 1 - PI*frn/Q; // pole radius - theta = 2*PI*frn; // pole angle - a1 = 0-2.0*R*cos(theta); // biquad coeff - a2 = R*R; // biquad coeff - - // dezippering of slider-driven signals: - s = 0.999; // smoothing parameter (one-pole pole location) - a1s = a1 : smooth(s); - a2s = a2 : smooth(s); - gs = g : smooth(s); - - tf2 = component("filter.lib").tf2; -}; - -//------------------------- crybaby_demo --------------------------- -// USAGE: _ : crybaby_demo : _ ; - -crybaby_demo = bypass1(bp, crybaby(wah)) with { - crybaby_group(x) = hgroup("CRYBABY [tooltip: Reference: https://ccrma.stanford.edu/~jos/pasp/vegf.html]", x); - bp = crybaby_group(checkbox("[0] Bypass [tooltip: When this is checked, the wah pedal has no effect]")); - wah = crybaby_group(hslider("[1] Wah parameter [tooltip: wah pedal angle between 0 (rocked back) and 1 (rocked forward)]",0.8,0,1,0.01)); -}; - -//------------ apnl(a1,a2) --------------- -// Passive Nonlinear Allpass: -// switch between allpass coefficient a1 and a2 at signal zero crossings -// REFERENCE: -// "A Passive Nonlinear Digital Filter Design ..." -// by John R. Pierce and Scott A. Van Duyne, -// JASA, vol. 101, no. 2, pp. 1120-1126, 1997 -// Written by Romain Michon and JOS based on Pierce switching springs idea: - apnl(a1,a2,x) = nonLinFilter - with{ - condition = _>0; - nonLinFilter = (x - _ <: _*(condition*a1 + (1-condition)*a2),_')~_ :> +; - }; - -//------------ piano_dispersion_filter(M,B,f0) --------------- -// Piano dispersion allpass filter in closed form -// -// ARGUMENTS: -// M = number of first-order allpass sections (compile-time only) -// Keep below 20. 8 is typical for medium-sized piano strings. -// B = string inharmonicity coefficient (0.0001 is typical) -// f0 = fundamental frequency in Hz -// -// INPUT: -// Signal to be filtered by the allpass chain -// -// OUTPUTS: -// 1. MINUS the estimated delay at f0 of allpass chain in samples, -// provided in negative form to facilitate subtraction -// from delay-line length (see USAGE below). -// 2. Output signal from allpass chain -// -// USAGE: -// piano_dispersion_filter(1,B,f0) : +(totalDelay),_ : fdelay(maxDelay) -// -// REFERENCE: -// "Dispersion Modeling in Waveguide Piano Synthesis -// Using Tunable Allpass Filters", -// by Jukka Rauhala and Vesa Valimaki, DAFX-2006, pp. 71-76 -// URL: http://www.dafx.ca/proceedings/papers/p_071.pdf -// NOTE: An erratum in Eq. (7) is corrected in Dr. Rauhala's -// encompassing dissertation (and below). -// See also: http://www.acoustics.hut.fi/research/asp/piano/ -// -piano_dispersion_filter(M,B,f0) = -Df0*M,seq(i,M,tf1(a1,1,a1)) -with { - a1 = (1-D)/(1+D); // By Eq. 3, have D >= 0, hence a1 >= 0 also - D = exp(Cd - Ikey(f0)*kd); - trt = pow(2.0,1.0/12.0); // 12th root of 2 - logb(b,x) = log(x) / log(b); // log-base-b of x - Ikey(f0) = logb(trt,f0*trt/27.5); - Bc = max(B,0.000001); - kd = exp(k1*log(Bc)*log(Bc) + k2*log(Bc)+k3); - Cd = exp((m1*log(M)+m2)*log(Bc)+m3*log(M)+m4); - k1 = -0.00179; - k2 = -0.0233; - k3 = -2.93; - m1 = 0.0126; - m2 = 0.0606; - m3 = -0.00825; - m4 = 1.97; - wT = 2*PI*f0/SR; - polydel(a) = atan(sin(wT)/(a+cos(wT)))/wT; - Df0 = polydel(a1) - polydel(1.0/a1); -}; - -//===================== Phasing and Flanging Effects ==================== - -//--------------- flanger_mono, flanger_stereo, flanger_demo ------------- -// Flanging effect -// -// USAGE: -// _ : flanger_mono(dmax,curdel,depth,fb,invert) : _; -// _,_ : flanger_stereo(dmax,curdel1,curdel2,depth,fb,invert) : _,_; -// _,_ : flanger_demo : _,_; -// -// ARGUMENTS: -// dmax = maximum delay-line length (power of 2) - 10 ms typical -// curdel = current dynamic delay (not to exceed dmax) -// depth = effect strength between 0 and 1 (1 typical) -// fb = feedback gain between 0 and 1 (0 typical) -// invert = 0 for normal, 1 to invert sign of flanging sum -// -// REFERENCE: -// https://ccrma.stanford.edu/~jos/pasp/Flanging.html -// -flanger_mono(dmax,curdel,depth,fb,invert) - = _ <: _, (-:fdelay(dmax,curdel)) ~ *(fb) : _, - *(select2(invert,depth,0-depth)) - : + : *(0.5); - -flanger_stereo(dmax,curdel1,curdel2,depth,fb,invert) - = flanger_mono(dmax,curdel1,depth,fb,invert), - flanger_mono(dmax,curdel2,depth,fb,invert); - -//------------------------- flanger_demo --------------------------- -// USAGE: _,_ : flanger_demo : _,_; -// -flanger_demo = bypass2(fbp,flanger_stereo_demo) with { - flanger_group(x) = - vgroup("FLANGER [tooltip: Reference: https://ccrma.stanford.edu/~jos/pasp/Flanging.html]", x); - meter_group(x) = flanger_group(hgroup("[0]", x)); - ctl_group(x) = flanger_group(hgroup("[1]", x)); - del_group(x) = flanger_group(hgroup("[2] Delay Controls", x)); - lvl_group(x) = flanger_group(hgroup("[3]", x)); - - fbp = meter_group(checkbox( - "[0] Bypass [tooltip: When this is checked, the flanger has no effect]")); - invert = meter_group(checkbox("[1] Invert Flange Sum")); - - // FIXME: This should be an amplitude-response display: - flangeview = lfor(freq) + lfol(freq) : meter_group(hbargraph( - "[2] Flange LFO [style: led] [tooltip: Display sum of flange delays]", -1.5,+1.5)); - - flanger_stereo_demo(x,y) = attach(x,flangeview),y : - *(level),*(level) : flanger_stereo(dmax,curdel1,curdel2,depth,fb,invert); - - lfol = component("oscillator.lib").oscrs; // sine for left channel - lfor = component("oscillator.lib").oscrc; // cosine for right channel - dmax = 2048; - dflange = 0.001 * SR * - del_group(hslider("[1] Flange Delay [unit:ms] [style:knob]", 10, 0, 20, 0.001)); - odflange = 0.001 * SR * - del_group(hslider("[2] Delay Offset [unit:ms] [style:knob]", 1, 0, 20, 0.001)); - freq = ctl_group(hslider("[1] Speed [unit:Hz] [style:knob]", 0.5, 0, 10, 0.01)); - depth = ctl_group(hslider("[2] Depth [style:knob]", 1, 0, 1, 0.001)); - fb = ctl_group(hslider("[3] Feedback [style:knob]", 0, -0.999, 0.999, 0.001)); - level = lvl_group(hslider("Flanger Output Level [unit:dB]", 0, -60, 10, 0.1)) : db2linear; - curdel1 = odflange+dflange*(1 + lfol(freq))/2; - curdel2 = odflange+dflange*(1 + lfor(freq))/2; -}; - -//------- phaser2_mono, phaser2_stereo, phaser2_demo ------- -// Phasing effect -// -// USAGE: -// _ : phaser2_mono(Notches,width,frqmin,fratio,frqmax,speed,depth,fb,invert) : _; -// _,_ : phaser2_stereo(") : _,_; -// _,_ : phaser2_demo : _,_; -// -// ARGUMENTS: -// Notches = number of spectral notches (MACRO ARGUMENT - not a signal) -// width = approximate width of spectral notches in Hz -// frqmin = approximate minimum frequency of first spectral notch in Hz -// fratio = ratio of adjacent notch frequencies -// frqmax = approximate maximum frequency of first spectral notch in Hz -// speed = LFO frequency in Hz (rate of periodic notch sweep cycles) -// depth = effect strength between 0 and 1 (1 typical) (aka "intensity") -// when depth=2, "vibrato mode" is obtained (pure allpass chain) -// fb = feedback gain between -1 and 1 (0 typical) -// invert = 0 for normal, 1 to invert sign of flanging sum -// -// REFERENCES: -// https://ccrma.stanford.edu/~jos/pasp/Phasing.html -// http://www.geofex.com/Article_Folders/phasers/phase.html -// 'An Allpass Approach to Digital Phasing and Flanging', Julius O. Smith III, -// Proc. Int. Computer Music Conf. (ICMC-84), pp. 103-109, Paris, 1984. -// CCRMA Tech. Report STAN-M-21: https://ccrma.stanford.edu/STANM/stanms/stanm21/ - -vibrato2_mono(sections,phase01,fb,width,frqmin,fratio,frqmax,speed) = - (+ : seq(i,sections,ap2p(R,th(i)))) ~ *(fb) -with { - tf2 = component("filter.lib").tf2; - // second-order resonant digital allpass given pole radius and angle: - ap2p(R,th) = tf2(a2,a1,1,a1,a2) with { - a2 = R^2; - a1 = -2*R*cos(th); - }; - SR = component("music.lib").SR; - R = exp(-pi*width/SR); - cososc = component("oscillator.lib").oscrc; - sinosc = component("oscillator.lib").oscrs; - osc = cososc(speed) * phase01 + sinosc(speed) * (1-phase01); - lfo = (1-osc)/2; // in [0,1] - pi = 4*atan(1); - thmin = 2*pi*frqmin/SR; - thmax = 2*pi*frqmax/SR; - th1 = thmin + (thmax-thmin)*lfo; - th(i) = (fratio^(i+1))*th1; -}; - -phaser2_mono(Notches,phase01,width,frqmin,fratio,frqmax,speed,depth,fb,invert) = - _ <: *(g1) + g2mi*vibrato2_mono(Notches,phase01,fb,width,frqmin,fratio,frqmax,speed) -with { // depth=0 => direct-signal only - g1 = 1-depth/2; // depth=1 => phaser mode (equal sum of direct and allpass-chain) - g2 = depth/2; // depth=2 => vibrato mode (allpass-chain signal only) - g2mi = select2(invert,g2,-g2); // inversion negates the allpass-chain signal -}; - -phaser2_stereo(Notches,width,frqmin,fratio,frqmax,speed,depth,fb,invert) - = phaser2_mono(Notches,0,width,frqmin,fratio,frqmax,speed,depth,fb,invert), - phaser2_mono(Notches,1,width,frqmin,fratio,frqmax,speed,depth,fb,invert); - -//------------------------- phaser2_demo --------------------------- -// USAGE: _,_ : phaser2_demo : _,_; -// -phaser2_demo = bypass2(pbp,phaser2_stereo_demo) with { - phaser2_group(x) = - vgroup("PHASER2 [tooltip: Reference: https://ccrma.stanford.edu/~jos/pasp/Flanging.html]", x); - meter_group(x) = phaser2_group(hgroup("[0]", x)); - ctl_group(x) = phaser2_group(hgroup("[1]", x)); - nch_group(x) = phaser2_group(hgroup("[2]", x)); - lvl_group(x) = phaser2_group(hgroup("[3]", x)); - - pbp = meter_group(checkbox( - "[0] Bypass [tooltip: When this is checked, the phaser has no effect]")); - invert = meter_group(checkbox("[1] Invert Internal Phaser Sum")); - vibr = meter_group(checkbox("[2] Vibrato Mode")); // In this mode you can hear any "Doppler" - - // FIXME: This should be an amplitude-response display: - //flangeview = phaser2_amp_resp : meter_group(hspectrumview("[2] Phaser Amplitude Response", 0,1)); - //phaser2_stereo_demo(x,y) = attach(x,flangeview),y : ... - - phaser2_stereo_demo = *(level),*(level) : - phaser2_stereo(Notches,width,frqmin,fratio,frqmax,speed,mdepth,fb,invert); - - Notches = 4; // Compile-time parameter: 2 is typical for analog phaser stomp-boxes - - // FIXME: Add tooltips - speed = ctl_group(hslider("[1] Speed [unit:Hz] [style:knob]", 0.5, 0, 10, 0.001)); - depth = ctl_group(hslider("[2] Notch Depth (Intensity) [style:knob]", 1, 0, 1, 0.001)); - fb = ctl_group(hslider("[3] Feedback Gain [style:knob]", 0, -0.999, 0.999, 0.001)); - - width = nch_group(hslider("[1] Notch width [unit:Hz] [style:knob]", 1000, 10, 5000, 1)); - frqmin = nch_group(hslider("[2] Min Notch1 Freq [unit:Hz] [style:knob]", 100, 20, 5000, 1)); - frqmax = nch_group(hslider("[3] Max Notch1 Freq [unit:Hz] [style:knob]", 800, 20, 10000, 1)) : max(frqmin); - fratio = nch_group(hslider("[4] Notch Freq Ratio: NotchFreq(n+1)/NotchFreq(n) [style:knob]", 1.5, 1.1, 4, 0.001)); - - level = lvl_group(hslider("Phaser Output Level [unit:dB]", 0, -60, 10, 0.1)) : component("music.lib").db2linear; - - mdepth = select2(vibr,depth,2); // Improve "ease of use" -}; - -//------------------------- stereo_width(w) --------------------------- -// Stereo Width effect using the Blumlein Shuffler technique. -// -// USAGE: "_,_ : stereo_width(w) : _,_", where -// w = stereo width between 0 and 1 -// -// At w=0, the output signal is mono ((left+right)/2 in both channels). -// At w=1, there is no effect (original stereo image). -// Thus, w between 0 and 1 varies stereo width from 0 to "original". -// -// REFERENCE: -// "Applications of Blumlein Shuffling to Stereo Microphone Techniques" -// Michael A. Gerzon, JAES vol. 42, no. 6, June 1994 -// -stereo_width(w) = shuffle : *(mgain),*(sgain) : shuffle -with { - shuffle = _,_ <: +,-; // normally scaled by 1/sqrt(2) for orthonormality, - mgain = 1-w/2; // but we pick up the needed normalization here. - sgain = w/2; -}; - -//--------------------------- amp_follower --------------------------- -// Classic analog audio envelope follower with infinitely fast rise and -// exponential decay. The amplitude envelope instantaneously follows -// the absolute value going up, but then floats down exponentially. -// -// USAGE: -// _ : amp_follower(rel) : _ -// -// where -// rel = release time = amplitude-envelope time-constant (sec) going down -// -// REFERENCES: -// Musical Engineer's Handbook, Bernie Hutchins, Ithaca NY, 1975 -// Elecronotes Newsletter, Bernie Hutchins - -amp_follower(rel) = abs : env with { - p = tau2pole(rel); - env(x) = x * (1.0 - p) : + ~ max(x,_) * p; -}; - -//--------------------------- amp_follower_ud --------------------------- -// Envelope follower with different up and down time-constants -// -// USAGE: -// _ : amp_follower_ud(att,rel) : _ -// -// where -// att = attack time = amplitude-envelope time constant (sec) going up -// rel = release time = amplitude-envelope time constant (sec) going down -// -// For audio, att should be faster (smaller) than rel (e.g., 0.001 and 0.01) - -amp_follower_ud(att,rel) = amp_follower(rel) : smooth(tau2pole(att)); - -//=============== Gates, Limiters, and Dynamic Range Compression ============ - -//----------------- gate_mono, gate_stereo ------------------- -// Mono and stereo signal gates -// -// USAGE: -// _ : gate_mono(thresh,att,hold,rel) : _ -// or -// _,_ : gate_stereo(thresh,att,hold,rel) : _,_ -// -// where -// thresh = dB level threshold above which gate opens (e.g., -60 dB) -// att = attack time = time constant (sec) for gate to open (e.g., 0.0001 s = 0.1 ms) -// hold = hold time = time (sec) gate stays open after signal level < thresh (e.g., 0.1 s) -// rel = release time = time constant (sec) for gate to close (e.g., 0.020 s = 20 ms) -// -// REFERENCES: -// - http://en.wikipedia.org/wiki/Noise_gate -// - http://www.soundonsound.com/sos/apr01/articles/advanced.asp -// - http://en.wikipedia.org/wiki/Gating_(sound_engineering) - -gate_mono(thresh,att,hold,rel,x) = x * gate_gain_mono(thresh,att,hold,rel,x); - -gate_stereo(thresh,att,hold,rel,x,y) = ggm*x, ggm*y with { - ggm = gate_gain_mono(thresh,att,hold,rel,abs(x)+abs(y)); -}; - -gate_gain_mono(thresh,att,hold,rel,x) = extendedrawgate : amp_follower_ud(att,rel) with { - extendedrawgate = max(rawgatesig,holdsig); - rawgatesig = inlevel(x) > db2linear(thresh); - inlevel(x) = amp_follower_ud(att/2,rel/2,x); - holdsig = ((max(holdreset & holdsamps,_) ~-(1)) > 0); - holdreset = rawgatesig > rawgatesig'; // reset hold when raw gate falls - holdsamps = int(hold*SR); -}; - -//-------------------- compressor_mono, compressor_stereo ---------------------- -// Mono and stereo dynamic range compressor_s -// -// USAGE: -// _ : compressor_mono(ratio,thresh,att,rel) : _ -// or -// _,_ : compressor_stereo(ratio,thresh,att,rel) : _,_ -// -// where -// ratio = compression ratio (1 = no compression, >1 means compression) -// thresh = dB level threshold above which compression kicks in -// att = attack time = time constant (sec) when level & compression going up -// rel = release time = time constant (sec) coming out of compression -// -// REFERENCES: -// - http://en.wikipedia.org/wiki/Dynamic_range_compression -// - https://ccrma.stanford.edu/~jos/filters/Nonlinear_Filter_Example_Dynamic.html -// - Albert Graef's /examples/synth/compressor_.dsp -// - -compressor_mono(ratio,thresh,att,rel,x) = x * compression_gain_mono(ratio,thresh,att,rel,x); - -compressor_stereo(ratio,thresh,att,rel,x,y) = cgm*x, cgm*y with { - cgm = compression_gain_mono(ratio,thresh,att,rel,abs(x)+abs(y)); -}; - -compression_gain_mono(ratio,thresh,att,rel) = - amp_follower_ud(att,rel) : linear2db : outminusindb(ratio,thresh) : - kneesmooth(att) : db2linear -with { - // kneesmooth(att) installs a "knee" in the dynamic-range compression, - // where knee smoothness is set equal to half that of the compression-attack. - // A general 'knee' parameter could be used instead of tying it to att/2: - kneesmooth(att) = smooth(tau2pole(att/2.0)); - // compression gain in dB: - outminusindb(ratio,thresh,level) = max(level-thresh,0) * (1/float(ratio)-1); - // Note: "float(ratio)" REQUIRED when ratio is an integer > 1! -}; - -//---------------------------- gate_demo ------------------------- -// USAGE: _,_ : gate_demo : _,_; -// -gate_demo = bypass2(gbp,gate_stereo_demo) with { - - gate_group(x) = vgroup("GATE [tooltip: Reference: http://en.wikipedia.org/wiki/Noise_gate]", x); - meter_group(x) = gate_group(hgroup("[0]", x)); - knob_group(x) = gate_group(hgroup("[1]", x)); - - gbp = meter_group(checkbox("[0] Bypass [tooltip: When this is checked, the gate has no effect]")); - - gateview = gate_gain_mono(gatethr,gateatt,gatehold,gaterel) : linear2db : - meter_group(hbargraph("[1] Gate Gain [unit:dB] [tooltip: Current gain of the gate in dB]", - -50,+10)); // [style:led] - - gate_stereo_demo(x,y) = attach(x,gateview(abs(x)+abs(y))),y : - gate_stereo(gatethr,gateatt,gatehold,gaterel); - - gatethr = knob_group(hslider("[1] Threshold [unit:dB] [style:knob] [tooltip: When the signal level falls below the Threshold (expressed in dB), the signal is muted]", - -30, -120, 0, 0.1)); - - gateatt = knob_group(hslider("[2] Attack [unit:us] [style:knob] [tooltip: Time constant in MICROseconds (1/e smoothing time) for the gate gain to go (exponentially) from 0 (muted) to 1 (unmuted)]", - 10, 10, 10000, 1)) : *(0.000001) : max(1/SR); - - gatehold = knob_group(hslider("[3] Hold [unit:ms] [style:knob] [tooltip: Time in ms to keep the gate open (no muting) after the signal level falls below the Threshold]", - 200, 0, 1000, 1)) : *(0.001) : max(1/SR); - - gaterel = knob_group(hslider("[4] Release [unit:ms] [style:knob] [tooltip: Time constant in ms (1/e smoothing time) for the gain to go (exponentially) from 1 (unmuted) to 0 (muted)]", - 100, 0, 1000, 1)) : *(0.001) : max(1/SR); -}; - -//---------------------------- compressor_demo ------------------------- -// USAGE: _,_ : compressor_demo : _,_; -// -compressor_demo = bypass2(cbp,compressor_stereo_demo) with { - - comp_group(x) = vgroup("COMPRESSOR [tooltip: Reference: http://en.wikipedia.org/wiki/Dynamic_range_compression]", x); - - meter_group(x) = comp_group(hgroup("[0]", x)); - knob_group(x) = comp_group(hgroup("[1]", x)); - - cbp = meter_group(checkbox("[0] Bypass [tooltip: When this is checked, the compressor has no effect]")); - - gainview = - compression_gain_mono(ratio,threshold,attack,release) : linear2db : - meter_group(hbargraph("[1] Compressor Gain [unit:dB] [tooltip: Current gain of the compressor in dB]", - -50,+10)); - - displaygain = _,_ <: _,_,(abs,abs:+) : _,_,gainview : _,attach; - - compressor_stereo_demo = - displaygain(compressor_stereo(ratio,threshold,attack,release)) : - *(makeupgain), *(makeupgain); - - ctl_group(x) = knob_group(hgroup("[3] Compression Control", x)); - - ratio = ctl_group(hslider("[0] Ratio [style:knob] [tooltip: A compression Ratio of N means that for each N dB increase in input signal level above Threshold, the output level goes up 1 dB]", - 5, 1, 20, 0.1)); - - threshold = ctl_group(hslider("[1] Threshold [unit:dB] [style:knob] [tooltip: When the signal level exceeds the Threshold (in dB), its level is compressed according to the Ratio]", - -30, -100, 10, 0.1)); - - env_group(x) = knob_group(hgroup("[4] Compression Response", x)); - - attack = env_group(hslider("[1] Attack [unit:ms] [style:knob] [tooltip: Time constant in ms (1/e smoothing time) for the compression gain to approach (exponentially) a new lower target level (the compression `kicking in')]", - 50, 0, 500, 0.1)) : *(0.001) : max(1/SR); - - release = env_group(hslider("[2] Release [unit:ms] [style: knob] [tooltip: Time constant in ms (1/e smoothing time) for the compression gain to approach (exponentially) a new higher target level (the compression 'releasing')]", - 500, 0, 1000, 0.1)) : *(0.001) : max(1/SR); - - makeupgain = comp_group(hslider("[5] Makeup Gain [unit:dB] [tooltip: The compressed-signal output level is increased by this amount (in dB) to make up for the level lost due to compression]", - 40, -96, 96, 0.1)) : db2linear; -}; - -//------------------------------- limiter_* ------------------------------------ -// USAGE: -// _ : limiter_1176_R4_mono : _; -// _,_ : limiter_1176_R4_stereo : _,_; -// -// DESCRIPTION: -// A limiter guards against hard-clipping. It can be can be -// implemented as a compressor having a high threshold (near the -// clipping level), fast attack and release, and high ratio. Since -// the ratio is so high, some knee smoothing is -// desirable ("soft limiting"). This example is intended -// to get you started using compressor_* as a limiter, so all -// parameters are hardwired to nominal values here. -// -// REFERENCE: http://en.wikipedia.org/wiki/1176_Peak_Limiter -// Ratios: 4 (moderate compression), 8 (severe compression), -// 12 (mild limiting), or 20 to 1 (hard limiting) -// Att: 20-800 MICROseconds (Note: scaled by ratio in the 1176) -// Rel: 50-1100 ms (Note: scaled by ratio in the 1176) -// Mike Shipley likes 4:1 (Grammy-winning mixer for Queen, Tom Petty, etc.) -// Faster attack gives "more bite" (e.g. on vocals) -// He hears a bright, clear eq effect as well (not implemented here) -// -limiter_1176_R4_mono = compressor_mono(4,-6,0.0008,0.5); -limiter_1176_R4_stereo = compressor_stereo(4,-6,0.0008,0.5); - -//========================== Schroeder Reverberators ====================== - -//------------------------------ jcrev,satrev ------------------------------ -// USAGE: -// _ : jcrev : _,_,_,_ -// _ : satrev : _,_ -// -// DESCRIPTION: -// These artificial reverberators take a mono signal and output stereo -// (satrev) and quad (jcrev). They were implemented by John Chowning -// in the MUS10 computer-music language (descended from Music V by Max -// Mathews). They are Schroeder Reverberators, well tuned for their size. -// Nowadays, the more expensive freeverb is more commonly used (see the -// Faust examples directory). - -// The reverb below was made from a listing of "RV", dated April 14, 1972, -// which was recovered from an old SAIL DART backup tape. -// John Chowning thinks this might be the one that became the -// well known and often copied JCREV: - -jcrev = *(0.06) : allpass_chain <: comb_bank :> _ <: mix_mtx with { - - rev1N = component("filter.lib").rev1; - - rev12(len,g) = rev1N(2048,len,g); - rev14(len,g) = rev1N(4096,len,g); - - allpass_chain = - rev2(512,347,0.7) : - rev2(128,113,0.7) : - rev2( 64, 37,0.7); - - comb_bank = - rev12(1601,.802), - rev12(1867,.773), - rev14(2053,.753), - rev14(2251,.733); - - mix_mtx = _,_,_,_ <: psum, -psum, asum, -asum : _,_,_,_ with { - psum = _,_,_,_ :> _; - asum = *(-1),_,*(-1),_ :> _; - }; -}; - -// The reverb below was made from a listing of "SATREV", dated May 15, 1971, -// which was recovered from an old SAIL DART backup tape. -// John Chowning thinks this might be the one used on his -// often-heard brass canon sound examples, one of which can be found at -// https://ccrma.stanford.edu/~jos/wav/FM_BrassCanon2.wav - -satrev = *(0.2) <: comb_bank :> allpass_chain <: _,*(-1) with { - - rev1N = component("filter.lib").rev1; - - rev11(len,g) = rev1N(1024,len,g); - rev12(len,g) = rev1N(2048,len,g); - - comb_bank = - rev11( 778,.827), - rev11( 901,.805), - rev11(1011,.783), - rev12(1123,.764); - - rev2N = component("filter.lib").rev2; - - allpass_chain = - rev2N(128,125,0.7) : - rev2N( 64, 42,0.7) : - rev2N( 16, 12,0.7); -}; - -//-------------------------------- freeverb -------------------------------- -// Freeverb is a widely used, free, open-source Schroeder reverb contributed -// by ``Jezar at Dreampoint.'' See /examples/freeverb.dsp - -//=============== Feedback Delay Network (FDN) Reverberators ============== - -//-------------------------------- fdnrev0 --------------------------------- -// Pure Feedback Delay Network Reverberator (generalized for easy scaling). -// -// USAGE: -// <1,2,4,...,N signals> <: -// fdnrev0(MAXDELAY,delays,BBSO,freqs,durs,loopgainmax,nonl) :> -// <1,2,4,...,N signals> -// -// WHERE -// N = 2, 4, 8, ... (power of 2) -// MAXDELAY = power of 2 at least as large as longest delay-line length -// delays = N delay lines, N a power of 2, lengths perferably coprime -// BBSO = odd positive integer = order of bandsplit desired at freqs -// freqs = NB-1 crossover frequencies separating desired frequency bands -// durs = NB decay times (t60) desired for the various bands -// loopgainmax = scalar gain between 0 and 1 used to "squelch" the reverb -// nonl = nonlinearity (0 to 0.999..., 0 being linear) -// -// REFERENCE: -// https://ccrma.stanford.edu/~jos/pasp/FDN_Reverberation.html -// -// DEPENDENCIES: filter.lib (filterbank) - -fdnrev0(MAXDELAY, delays, BBSO, freqs, durs, loopgainmax, nonl) - = (bus(2*N) :> bus(N) : delaylines(N)) ~ - (delayfilters(N,freqs,durs) : feedbackmatrix(N)) -with { - N = count(delays); - NB = count(durs); -//assert(count(freqs)+1==NB); - delayval(i) = take(i+1,delays); - dlmax(i) = MAXDELAY; // must hardwire this from argument for now -//dlmax(i) = 2^max(1,nextpow2(delayval(i))) // try when slider min/max is known -// with { nextpow2(x) = ceil(log(x)/log(2.0)); }; -// -1 is for feedback delay: - delaylines(N) = par(i,N,(delay(dlmax(i),(delayval(i)-1)))); - delayfilters(N,freqs,durs) = par(i,N,filter(i,freqs,durs)); - feedbackmatrix(N) = bhadamard(N); - vbutterfly(n) = bus(n) <: (bus(n):>bus(n/2)) , ((bus(n/2),(bus(n/2):par(i,n/2,*(-1)))) :> bus(n/2)); - bhadamard(2) = bus(2) <: +,-; - bhadamard(n) = bus(n) <: (bus(n):>bus(n/2)) , ((bus(n/2),(bus(n/2):par(i,n/2,*(-1)))) :> bus(n/2)) - : (bhadamard(n/2) , bhadamard(n/2)); - - // Experimental nonlinearities: - // nonlinallpass = apnl(nonl,-nonl); - // s = nonl*PI; - // nonlinallpass(x) = allpassnn(3,(s*x,s*x*x,s*x*x*x)); // filter.lib - nonlinallpass = _; // disabled by default (rather expensive) - - filter(i,freqs,durs) = filterbank(BBSO,freqs) : par(j,NB,*(g(j,i))) - :> *(loopgainmax) / sqrt(N) : nonlinallpass - with { - dur(j) = take(j+1,durs); - n60(j) = dur(j)*SR; // decay time in samples - g(j,i) = exp(-3.0*log(10.0)*delayval(i)/n60(j)); - // ~ 1.0 - 6.91*delayval(i)/(SR*dur(j)); // valid for large dur(j) - }; -}; - -// ---------- prime_power_delays ----- -// Prime Power Delay Line Lengths -// -// USAGE: -// bus(N) : prime_power_delays(N,pathmin,pathmax) : bus(N); -// -// WHERE -// N = positive integer up to 16 -// (for higher powers of 2, extend 'primes' array below.) -// pathmin = minimum acoustic ray length in the reverberator (in meters) -// pathmax = maximum acoustic ray length (meters) - think "room size" -// -// DEPENDENCIES: -// math.lib (SR, selector, take) -// music.lib (db2linear) -// -// REFERENCE: -// https://ccrma.stanford.edu/~jos/pasp/Prime_Power_Delay_Line.html -// -prime_power_delays(N,pathmin,pathmax) = par(i,N,delayvals(i)) with { - Np = 16; - primes = 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53; - prime(n) = primes : selector(n,Np); // math.lib - - // Prime Power Bounds [matlab: floor(log(maxdel)./log(primes(53)))] - maxdel=8192; // more than 63 meters at 44100 samples/sec & 343 m/s - ppbs = 13,8,5,4, 3,3,3,3, 2,2,2,2, 2,2,2,2; // 8192 is enough for all - ppb(i) = take(i+1,ppbs); - - // Approximate desired delay-line lengths using powers of distinct primes: - c = 343; // soundspeed in m/s at 20 degrees C for dry air - dmin = SR*pathmin/c; - dmax = SR*pathmax/c; - dl(i) = dmin * (dmax/dmin)^(i/float(N-1)); // desired delay in samples - ppwr(i) = floor(0.5+log(dl(i))/log(prime(i))); // best prime power - delayvals(i) = prime(i)^ppwr(i); // each delay a power of a distinct prime -}; - -//--------------------- stereo_reverb_tester -------------------- -// Handy test inputs for reverberator demos below. - -stereo_reverb_tester(revin_group,x,y) = inx,iny with { - ck_group(x) = revin_group(vgroup("[1] Input Config",x)); - mutegain = 1 - ck_group(checkbox("[1] Mute Ext Inputs - [tooltip: When this is checked, the stereo external audio inputs are disabled (good for hearing the impulse response or pink-noise response alone)]")); - pinkin = ck_group(checkbox("[2] Pink Noise - [tooltip: Pink Noise (or 1/f noise) is Constant-Q Noise (useful for adjusting the EQ sections)]")); - - impulsify = _ <: _,mem : - : >(0); - imp_group(x) = revin_group(hgroup("[2] Impulse Selection",x)); - pulseL = imp_group(button("[1] Left - [tooltip: Send impulse into LEFT channel]")) : impulsify; - pulseC = imp_group(button("[2] Center - [tooltip: Send impulse into LEFT and RIGHT channels]")) : impulsify; - pulseR = imp_group(button("[3] Right - [tooltip: Send impulse into RIGHT channel]")) : impulsify; - - inx = x*mutegain + (pulseL+pulseC) + pn; - iny = y*mutegain + (pulseR+pulseC) + pn; - pn = 0.1*pinkin*component("oscillator.lib").pink_noise; -}; - -//------------------------- fdnrev0_demo --------------------------- -// USAGE: _,_ : fdnrev0_demo(N,NB,BBSO) : _,_ -// WHERE -// N = Feedback Delay Network (FDN) order -// = number of delay lines used = order of feedback matrix -// = 2, 4, 8, or 16 [extend primes array below for 32, 64, ...] -// NB = number of frequency bands -// = number of (nearly) independent T60 controls -// = integer 3 or greater -// BBSO = Butterworth band-split order -// = order of lowpass/highpass bandsplit used at each crossover freq -// = odd positive integer - -fdnrev0_demo(N,NB,BBSO,x,y) = stereo_reverb_tester(revin_group,x,y) - <: fdnrev0(MAXDELAY,delays,BBSO,freqs,durs,loopgainmax,nonl) - :> *(gain),*(gain) -with { - MAXDELAY = 8192; // sync w delays and prime_power_delays above - defdurs = (8.4,6.5,5.0,3.8,2.7); // NB default durations (sec) - deffreqs = (500,1000,2000,4000); // NB-1 default crossover frequencies (Hz) - deflens = (56.3,63.0); // 2 default min and max path lengths - - fdn_group(x) = vgroup("FEEDBACK DELAY NETWORK (FDN) REVERBERATOR, ORDER 16 - [tooltip: See Faust's effect.lib for documentation and references]", x); - - freq_group(x) = fdn_group(vgroup("[1] Band Crossover Frequencies", x)); - t60_group(x) = fdn_group(hgroup("[2] Band Decay Times (T60)", x)); - path_group(x) = fdn_group(vgroup("[3] Room Dimensions", x)); - revin_group(x) = fdn_group(hgroup("[4] Input Controls", x)); - nonl_group(x) = revin_group(vgroup("[4] Nonnlinearity",x)); - quench_group(x) = revin_group(vgroup("[3] Reverb State",x)); - - nonl = nonl_group(hslider("[style:knob] [tooltip: nonlinear mode coupling]", - 0, -0.999, 0.999, 0.001)); - loopgainmax = 1.0-0.5*quench_group(button("[1] Quench - [tooltip: Hold down 'Quench' to clear the reverberator]")); - - pathmin = path_group(hslider("[1] min acoustic ray length [unit:m] - [tooltip: This length (in meters) determines the shortest delay-line used in the FDN reverberator. - Think of it as the shortest wall-to-wall separation in the room.]", - 46, 0.1, 63, 0.1)); - pathmax = path_group(hslider("[2] max acoustic ray length [unit:m] - [tooltip: This length (in meters) determines the longest delay-line used in the FDN reverberator. - Think of it as the largest wall-to-wall separation in the room.]", - 63, 0.1, 63, 0.1)); - - durvals(i) = t60_group(vslider("[%i] %i [unit:s] - [tooltip: T60 is the 60dB decay-time in seconds. For concert halls, an overall reverberation time (T60) near 1.9 seconds is typical [Beranek 2004]. Here we may set T60 independently in each frequency band. In real rooms, higher frequency bands generally decay faster due to absorption and scattering.]", - take(i+1,defdurs), 0.1, 10, 0.1)); - durs = par(i,NB,durvals(NB-1-i)); - - freqvals(i) = freq_group(hslider("[%i] Band %i upper edge in Hz [unit:Hz] - [tooltip: Each delay-line signal is split into frequency-bands for separate decay-time control in each band]", - take(i+1,deffreqs), 100, 10000, 1)); - freqs = par(i,NB-1,freqvals(i)); - - delays = prime_power_delays(N,pathmin,pathmax); - - gain = hslider("[3] Output Level (dB) [unit:dB] - [tooltip: Output scale factor]", -40, -70, 20, 0.1) : db2linear; - // (can cause infinite loop:) with { db2linear(x) = pow(10, x/20.0); }; -}; - -//------------------------------- zita_rev_fdn ------------------------------- -// Internal 8x8 late-reverberation FDN used in the FOSS Linux reverb zita-rev1 -// by Fons Adriaensen . This is an FDN reverb with -// allpass comb filters in each feedback delay in addition to the -// damping filters. -// -// USAGE: -// bus(8) : zita_rev_fdn(f1,f2,t60dc,t60m,fsmax) : bus(8) -// -// WHERE -// f1 = crossover frequency (Hz) separating dc and midrange frequencies -// f2 = frequency (Hz) above f1 where T60 = t60m/2 (see below) -// t60dc = desired decay time (t60) at frequency 0 (sec) -// t60m = desired decay time (t60) at midrange frequencies (sec) -// fsmax = maximum sampling rate to be used (Hz) -// -// REFERENCES: -// http://www.kokkinizita.net/linuxaudio/zita-rev1-doc/quickguide.html -// https://ccrma.stanford.edu/~jos/pasp/Zita_Rev1.html -// -// DEPENDENCIES: -// filter.lib (allpass_comb, lowpass, smooth) -// math.lib (hadamard, take, etc.) - -zita_rev_fdn(f1,f2,t60dc,t60m,fsmax) = - ((bus(2*N) :> allpass_combs(N) : feedbackmatrix(N)) ~ - (delayfilters(N,freqs,durs) : fbdelaylines(N))) -with { - N = 8; - - // Delay-line lengths in seconds: - apdelays = (0.020346, 0.024421, 0.031604, 0.027333, 0.022904, - 0.029291, 0.013458, 0.019123); // feedforward delays in seconds - tdelays = ( 0.153129, 0.210389, 0.127837, 0.256891, 0.174713, - 0.192303, 0.125000, 0.219991); // total delays in seconds - tdelay(i) = floor(0.5 + SR*take(i+1,tdelays)); // samples - apdelay(i) = floor(0.5 + SR*take(i+1,apdelays)); - fbdelay(i) = tdelay(i) - apdelay(i); - // NOTE: Since SR is not bounded at compile time, we can't use it to - // allocate delay lines; hence, the fsmax parameter: - tdelaymaxfs(i) = floor(0.5 + fsmax*take(i+1,tdelays)); - apdelaymaxfs(i) = floor(0.5 + fsmax*take(i+1,apdelays)); - fbdelaymaxfs(i) = tdelaymaxfs(i) - apdelaymaxfs(i); - nextpow2(x) = ceil(log(x)/log(2.0)); - maxapdelay(i) = int(2.0^max(1.0,nextpow2(apdelaymaxfs(i)))); - maxfbdelay(i) = int(2.0^max(1.0,nextpow2(fbdelaymaxfs(i)))); - - apcoeff(i) = select2(i&1,0.6,-0.6); // allpass comb-filter coefficient - allpass_combs(N) = - par(i,N,(allpass_comb(maxapdelay(i),apdelay(i),apcoeff(i)))); // filter.lib - fbdelaylines(N) = par(i,N,(delay(maxfbdelay(i),(fbdelay(i))))); - freqs = (f1,f2); durs = (t60dc,t60m); - delayfilters(N,freqs,durs) = par(i,N,filter(i,freqs,durs)); - feedbackmatrix(N) = hadamard(N); // math.lib - - staynormal = 10.0^(-20); // let signals decay well below LSB, but not to zero - - special_lowpass(g,f) = smooth(p) with { - // unity-dc-gain lowpass needs gain g at frequency f => quadratic formula: - p = mbo2 - sqrt(max(0,mbo2*mbo2 - 1.0)); // other solution is unstable - mbo2 = (1.0 - gs*c)/(1.0 - gs); // NOTE: must ensure |g|<1 (t60m finite) - gs = g*g; - c = cos(2.0*PI*f/float(SR)); - }; - - filter(i,freqs,durs) = lowshelf_lowpass(i)/sqrt(float(N))+staynormal - with { - lowshelf_lowpass(i) = gM*low_shelf1_l(g0/gM,f(1)):special_lowpass(gM,f(2)); - low_shelf1_l(G0,fx,x) = x + (G0-1)*lowpass(1,fx,x); // filter.lib - g0 = g(0,i); - gM = g(1,i); - f(k) = take(k,freqs); - dur(j) = take(j+1,durs); - n60(j) = dur(j)*SR; // decay time in samples - g(j,i) = exp(-3.0*log(10.0)*tdelay(i)/n60(j)); - }; -}; - -// Stereo input delay used by zita_rev1 in both stereo and ambisonics mode: -zita_in_delay(rdel) = zita_delay_mono(rdel), zita_delay_mono(rdel) with { - zita_delay_mono(rdel) = delay(8192,SR*rdel*0.001) * 0.3; -}; - -// Stereo input mapping used by zita_rev1 in both stereo and ambisonics mode: -zita_distrib2(N) = _,_ <: fanflip(N) with { - fanflip(4) = _,_,*(-1),*(-1); - fanflip(N) = fanflip(N/2),fanflip(N/2); -}; - -//--------------------------- zita_rev_fdn_demo ------------------------------ -// zita_rev_fdn_demo = zita_rev_fdn (above) + basic GUI -// -// USAGE: -// bus(8) : zita_rev_fdn_demo(f1,f2,t60dc,t60m,fsmax) : bus(8) -// -// WHERE -// (args and references as for zita_rev_fdn above) - -zita_rev_fdn_demo = zita_rev_fdn(f1,f2,t60dc,t60m,fsmax) -with { - fsmax = 48000.0; - fdn_group(x) = hgroup( - "Zita_Rev Internal FDN Reverb [tooltip: ~ Zita_Rev's internal 8x8 Feedback Delay Network (FDN) & Schroeder allpass-comb reverberator. See Faust's effect.lib for documentation and references]",x); - t60dc = fdn_group(vslider("[1] Low RT60 [unit:s] [style:knob] - [style:knob] - [tooltip: T60 = time (in seconds) to decay 60dB in low-frequency band]", - 3, 1, 8, 0.1)); - f1 = fdn_group(vslider("[2] LF X [unit:Hz] [style:knob] - [tooltip: Crossover frequency (Hz) separating low and middle frequencies]", - 200, 50, 1000, 1)); - t60m = fdn_group(vslider("[3] Mid RT60 [unit:s] [style:knob] - [tooltip: T60 = time (in seconds) to decay 60dB in middle band]", - 2, 1, 8, 0.1)); - f2 = fdn_group(vslider("[4] HF Damping [unit:Hz] [style:knob] - [tooltip: Frequency (Hz) at which the high-frequency T60 is half the middle-band's T60]", - 6000, 1500, 0.49*fsmax, 1)); -}; - -//---------------------------- zita_rev1_stereo --------------------------- -// Extend zita_rev_fdn to include zita_rev1 input/output mapping in stereo mode. -// -// USAGE: -// _,_ : zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax) : _,_ -// -// WHERE -// rdel = delay (in ms) before reverberation begins (e.g., 0 to ~100 ms) -// (remaining args and refs as for zita_rev_fdn above) - -zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax) = - zita_in_delay(rdel) - : zita_distrib2(N) - : zita_rev_fdn(f1,f2,t60dc,t60m,fsmax) - : output2(N) -with { - N = 8; - output2(N) = outmix(N) : *(t1),*(t1); - t1 = 0.37; // zita-rev1 linearly ramps from 0 to t1 over one buffer - outmix(4) = !,butterfly(2),!; // probably the result of some experimenting! - outmix(N) = outmix(N/2),par(i,N/2,!); -}; - -//----------------------------- zita_rev1_ambi --------------------------- -// Extend zita_rev_fdn to include zita_rev1 input/output mapping in -// "ambisonics mode", as provided in the Linux C++ version. -// -// USAGE: -// _,_ : zita_rev1_ambi(rgxyz,rdel,f1,f2,t60dc,t60m,fsmax) : _,_,_,_ -// -// WHERE -// rgxyz = relative gain of lanes 1,4,2 to lane 0 in output (e.g., -9 to 9) -// (remaining args and references as for zita_rev1_stereo above) - -zita_rev1_ambi(rgxyz,rdel,f1,f2,t60dc,t60m,fsmax) = - zita_in_delay(rdel) - : zita_distrib2(N) - : zita_rev_fdn(f1,f2,t60dc,t60m,fsmax) - : output4(N) // ambisonics mode -with { - N=8; - output4(N) = select4 : *(t0),*(t1),*(t1),*(t1); - select4 = _,_,_,!,_,!,!,! : _,_,cross with { cross(x,y) = y,x; }; - t0 = 1.0/sqrt(2.0); - t1 = t0 * 10.0^(0.05 * rgxyz); -}; - -//---------------------------------- zita_rev1 ------------------------------ -// Example GUI for zita_rev1_stereo (mostly following the Linux zita-rev1 GUI). -// -// Only the dry/wet and output level parameters are "dezippered" here. If -// parameters are to be varied in real time, use "smooth(0.999)" or the like -// in the same way. -// -// REFERENCE: -// http://www.kokkinizita.net/linuxaudio/zita-rev1-doc/quickguide.html -// -// DEPENDENCIES: -// filter.lib (peak_eq_rm) - -zita_rev1(x,y) = zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax,x,y) - : out_eq : dry_wet(x,y) : out_level -with { - - fsmax = 48000.0; // highest sampling rate that will be used - - fdn_group(x) = hgroup( - "[0] Zita_Rev1 [tooltip: ~ ZITA REV1 FEEDBACK DELAY NETWORK (FDN) & SCHROEDER ALLPASS-COMB REVERBERATOR (8x8). See Faust's effect.lib for documentation and references]", x); - - in_group(x) = fdn_group(hgroup("[1] Input", x)); - - rdel = in_group(vslider("[1] In Delay [unit:ms] [style:knob] - [tooltip: Delay in ms before reverberation begins]", - 60,20,100,1)); - - freq_group(x) = fdn_group(hgroup("[2] Decay Times in Bands (see tooltips)", x)); - - f1 = freq_group(vslider("[1] LF X [unit:Hz] [style:knob] - [tooltip: Crossover frequency (Hz) separating low and middle frequencies]", - 200, 50, 1000, 1)); - - t60dc = freq_group(vslider("[2] Low RT60 [unit:s] [style:knob] - [style:knob] [tooltip: T60 = time (in seconds) to decay 60dB in low-frequency band]", - 3, 1, 8, 0.1)); - - t60m = freq_group(vslider("[3] Mid RT60 [unit:s] [style:knob] - [tooltip: T60 = time (in seconds) to decay 60dB in middle band]", - 2, 1, 8, 0.1)); - - f2 = freq_group(vslider("[4] HF Damping [unit:Hz] [style:knob] - [tooltip: Frequency (Hz) at which the high-frequency T60 is half the middle-band's T60]", - 6000, 1500, 0.49*fsmax, 1)); - - out_eq = pareq_stereo(eq1f,eq1l,eq1q) : pareq_stereo(eq2f,eq2l,eq2q); -// Zolzer style peaking eq (not used in zita-rev1) (filter.lib): -// pareq_stereo(eqf,eql,Q) = peak_eq(eql,eqf,eqf/Q), peak_eq(eql,eqf,eqf/Q); -// Regalia-Mitra peaking eq with "Q" hard-wired near sqrt(g)/2 (filter.lib): - pareq_stereo(eqf,eql,Q) = peak_eq_rm(eql,eqf,tpbt), peak_eq_rm(eql,eqf,tpbt) - with { - tpbt = wcT/sqrt(max(0,g)); // tan(PI*B/SR), B bw in Hz (Q^2 ~ g/4) - wcT = 2*PI*eqf/SR; // peak frequency in rad/sample - g = db2linear(eql); // peak gain - }; - - eq1_group(x) = fdn_group(hgroup("[3] RM Peaking Equalizer 1", x)); - - eq1f = eq1_group(vslider("[1] Eq1 Freq [unit:Hz] [style:knob] - [tooltip: Center-frequency of second-order Regalia-Mitra peaking equalizer section 1]", - 315, 40, 2500, 1)); - - eq1l = eq1_group(vslider("[2] Eq1 Level [unit:dB] [style:knob] - [tooltip: Peak level in dB of second-order Regalia-Mitra peaking equalizer section 1]", - 0, -15, 15, 0.1)); - - eq1q = eq1_group(vslider("[3] Eq1 Q [style:knob] - [tooltip: Q = centerFrequency/bandwidth of second-order peaking equalizer section 1]", - 3, 0.1, 10, 0.1)); - - eq2_group(x) = fdn_group(hgroup("[4] RM Peaking Equalizer 2", x)); - - eq2f = eq2_group(vslider("[1] Eq2 Freq [unit:Hz] [style:knob] - [tooltip: Center-frequency of second-order Regalia-Mitra peaking equalizer section 2]", - 315, 40, 2500, 1)); - - eq2l = eq2_group(vslider("[2] Eq2 Level [unit:dB] [style:knob] - [tooltip: Peak level in dB of second-order Regalia-Mitra peaking equalizer section 2]", - 0, -15, 15, 0.1)); - - eq2q = eq2_group(vslider("[3] Eq2 Q [style:knob] - [tooltip: Q = centerFrequency/bandwidth of second-order peaking equalizer section 2]", - 3, 0.1, 10, 0.1)); - - out_group(x) = fdn_group(hgroup("[5] Output", x)); - - dry_wet(x,y) = *(wet) + dry*x, *(wet) + dry*y with { - wet = 0.5*(drywet+1.0); - dry = 1.0-wet; - }; - - drywet = out_group(vslider("[1] Dry/Wet Mix [style:knob] - [tooltip: -1 = dry, 1 = wet]", - 0, -1.0, 1.0, 0.01)) : smooth(0.999); - - out_level = *(gain),*(gain); - - gain = out_group(vslider("[2] Level [unit:dB] [style:knob] - [tooltip: Output scale factor]", -20, -70, 40, 0.1)) - : smooth(0.999) : db2linear; - -}; - -//---------------------------------- mesh_square ------------------------------ -// Square Rectangular Digital Waveguide Mesh -// -// USAGE: -// bus(4*N) : mesh_square(N) : bus(4*N); -// -// WHERE -// N = number of nodes along each edge - a power of two (1,2,4,8,...) -// -// EXAMPLE: Reflectively terminated mesh impulsed at one corner: -// mesh_square_test(N,x) = mesh_square(N)~(busi(4*N,x)) // input to corner -// with { busi(N,x) = bus(N) : par(i,N,*(-1)) : par(i,N-1,_), +(x); }; -// process = 1-1' : mesh_square_test(4); // all modes excited forever -// -// REQUIRES: math.lib. -// -// REFERENCE: -// https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Mesh.html - -// four-port scattering junction: -mesh_square(1) - = bus(4) <: par(i,4,*(-1)), (bus(4) :> (*(.5)) <: bus(4)) :> bus(4); - -// rectangular NxN square waveguide mesh: -mesh_square(N) = bus(4*N) : (route_inputs(N/2) : par(i,4,mesh_square(N/2))) - ~(prune_feedback(N/2)) - : prune_outputs(N/2) : route_outputs(N/2) : bus(4*N) -with { - block(N) = par(i,N,!); - - // select block i of N, block size = M: - s(i,N,M) = par(j, M*N, Sv(i, j)) - with { Sv(i,i) = bus(N); Sv(i,j) = block(N); }; - - // prune mesh outputs down to the signals which make it out: - prune_outputs(N) - = bus(16*N) : - block(N), bus(N), block(N), bus(N), - block(N), bus(N), bus(N), block(N), - bus(N), block(N), block(N), bus(N), - bus(N), block(N), bus(N), block(N) - : bus(8*N); - - // collect mesh outputs into standard order (N,W,E,S): - route_outputs(N) - = bus(8*N) - <: s(4,N,8),s(5,N,8), s(0,N,8),s(2,N,8), - s(3,N,8),s(7,N,8), s(1,N,8),s(6,N,8) - : bus(8*N); - - // collect signals used as feedback: - prune_feedback(N) = bus(16*N) : - bus(N), block(N), bus(N), block(N), - bus(N), block(N), block(N), bus(N), - block(N), bus(N), bus(N), block(N), - block(N), bus(N), block(N), bus(N) : - bus(8*N); - - // route mesh inputs (feedback, external inputs): - route_inputs(N) = bus(8*N), bus(8*N) - <:s(8,N,16),s(4,N,16), s(12,N,16),s(3,N,16), - s(9,N,16),s(6,N,16), s(1,N,16),s(14,N,16), - s(0,N,16),s(10,N,16), s(13,N,16),s(7,N,16), - s(2,N,16),s(11,N,16), s(5,N,16),s(15,N,16) - : bus(16*N); -};