X-Git-Url: https://scm.cri.ensmp.fr/git/Faustine.git/blobdiff_plain/1059e1cc0c2ecfa237406949aa26155b6a5b9154..66f23d4fabf89ad09adbd4dfc15ac6b5b2b7da83:/interpretor/preprocessor/faust-0.9.47mr3/examples/faust-stk/brass.dsp diff --git a/interpretor/preprocessor/faust-0.9.47mr3/examples/faust-stk/brass.dsp b/interpretor/preprocessor/faust-0.9.47mr3/examples/faust-stk/brass.dsp deleted file mode 100644 index fabaf01..0000000 --- a/interpretor/preprocessor/faust-0.9.47mr3/examples/faust-stk/brass.dsp +++ /dev/null @@ -1,103 +0,0 @@ -declare name "Brass"; -declare description "WaveGuide Brass instrument from STK"; -declare author "Romain Michon (rmichon@ccrma.stanford.edu)"; -declare copyright "Romain Michon"; -declare version "1.0"; -declare licence "STK-4.3"; // Synthesis Tool Kit 4.3 (MIT style license); -declare description "A simple brass instrument waveguide model, a la Cook (TBone, HosePlayer)."; -declare reference "https://ccrma.stanford.edu/~jos/pasp/Brasses.html"; - -import("music.lib"); -import("instrument.lib"); - -//==================== GUI SPECIFICATION ================ - -freq = nentry("h:Basic_Parameters/freq [1][unit:Hz] [tooltip:Tone frequency]",440,20,20000,1); -gain = nentry("h:Basic_Parameters/gain [1][tooltip:Gain (value between 0 and 1)]",1,0,1,0.01); -gate = button("h:Basic_Parameters/gate [1][tooltip:noteOn = 1, noteOff = 0]"); - -pressure = hslider("h:Physical_and_Nonlinearity/v:Physical_Parameters/Pressure -[2][tooltip:A value between 0 and 1]",1,0.01,1,0.01); -lipTension = hslider("h:Physical_and_Nonlinearity/v:Physical_Parameters/Lip_Tension -[2][tooltip:A value between 0 and 1]",0.780,0.01,1,0.001); -slideLength = hslider("h:Physical_and_Nonlinearity/v:Physical_Parameters/Slide_Length -[2][tooltip:A value between 0 and 1]",0.041,0.01,1,0.001); - -typeModulation = nentry("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Modulation_Type -[3][tooltip: 0=theta is modulated by the incoming signal; 1=theta is modulated by the averaged incoming signal; -2=theta is modulated by the squared incoming signal; 3=theta is modulated by a sine wave of frequency freqMod; -4=theta is modulated by a sine wave of frequency freq;]",0,0,4,1); -nonLinearity = hslider("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Nonlinearity -[3][tooltip:Nonlinearity factor (value between 0 and 1)]",0,0,1,0.01); -frequencyMod = hslider("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Modulation_Frequency -[3][unit:Hz][tooltip:Frequency of the sine wave for the modulation of theta (works if Modulation Type=3)]",220,20,1000,0.1); -nonLinAttack = hslider("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Nonlinearity_Attack -[3][unit:s][Attack duration of the nonlinearity]",0.1,0,2,0.01); - -vibratoFreq = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Freq -[4][unit:Hz]",6,1,15,0.1); -vibratoGain = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Gain -[4][tooltip:A value between 0 and 1]",0.05,0,1,0.01); -vibratoBegin = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Begin -[4][unit:s][tooltip:Vibrato silence duration before attack]",0.05,0,2,0.01); -vibratoAttack = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Attack -[4][unit:s][tooltip:Vibrato attack duration]",0.5,0,2,0.01); -vibratoRelease = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Release -[4][unit:s][tooltip:Vibrato release duration]",0.1,0,2,0.01); - -envelopeAttack = hslider("h:Envelopes_and_Vibrato/v:Envelope_Parameters/Envelope_Attack -[5][unit:s][tooltip:Envelope attack duration]",0.005,0,2,0.01); -envelopeDecay = hslider("h:Envelopes_and_Vibrato/v:Envelope_Parameters/Envelope_Decay -[5][unit:s][tooltip:Envelope decay duration]",0.001,0,2,0.01); -envelopeRelease = hslider("h:Envelopes_and_Vibrato/v:Envelope_Parameters/Envelope_Release -[5][unit:s][tooltip:Envelope release duration]",0.07,0,2,0.01); - -//==================== SIGNAL PROCESSING ================ - -//----------------------- Nonlinear filter ---------------------------- -//nonlinearities are created by the nonlinear passive allpass ladder filter declared in filter.lib - -//nonlinear filter order -nlfOrder = 6; - -//attack - sustain - release envelope for nonlinearity (declared in instrument.lib) -envelopeMod = asr(nonLinAttack,100,envelopeRelease,gate); - -//nonLinearModultor is declared in instrument.lib, it adapts allpassnn from filter.lib -//for using it with waveguide instruments -NLFM = nonLinearModulator((nonLinearity : smooth(0.999)),envelopeMod,freq, - typeModulation,(frequencyMod : smooth(0.999)),nlfOrder); - -//----------------------- Synthesis parameters computing and functions declaration ---------------------------- - -//lips are simulated by a biquad filter whose output is squared and hard-clipped, bandPassH and saturationPos are declared in instrument.lib -lipFilterFrequency = freq*pow(4,(2*lipTension)-1); -lipFilter = *(0.03) : bandPassH(lipFilterFrequency,0.997) <: * : saturationPos; - -//stereoizer is declared in instrument.lib and implement a stereo spacialisation in function of -//the frequency period in number of samples -stereo = stereoizer(SR/freq); - -//delay times in number of samples -slideTarget = ((SR/freq)*2 + 3)*(0.5 + slideLength); -boreDelay = fdelay(4096,slideTarget); - -//----------------------- Algorithm implementation ---------------------------- - -//vibrato -vibrato = vibratoGain*osc(vibratoFreq)*envVibrato(vibratoBegin,vibratoAttack,100,vibratoRelease,gate); - -//envelope (Attack / Decay / Sustain / Release), breath pressure and vibrato -breathPressure = pressure*adsr(envelopeAttack,envelopeDecay,100,envelopeRelease,gate) + vibrato; -mouthPressure = 0.3*breathPressure; - -//scale the delay feedback -borePressure = *(0.85); - -//differencial presure -deltaPressure = mouthPressure - _; - -process = (borePressure <: deltaPressure,_ : - (lipFilter <: *(mouthPressure),(1-_)),_ : _, * :> + : - dcblocker) ~ (boreDelay : NLFM) : - *(gain)*4 : stereo : instrReverb;