X-Git-Url: https://scm.cri.ensmp.fr/git/Faustine.git/blobdiff_plain/1059e1cc0c2ecfa237406949aa26155b6a5b9154..66f23d4fabf89ad09adbd4dfc15ac6b5b2b7da83:/interpretor/preprocessor/faust-0.9.47mr3/examples/faust-stk/flutestk.dsp diff --git a/interpretor/preprocessor/faust-0.9.47mr3/examples/faust-stk/flutestk.dsp b/interpretor/preprocessor/faust-0.9.47mr3/examples/faust-stk/flutestk.dsp deleted file mode 100644 index 7f74a21..0000000 --- a/interpretor/preprocessor/faust-0.9.47mr3/examples/faust-stk/flutestk.dsp +++ /dev/null @@ -1,121 +0,0 @@ -declare name "FluteSTK"; -declare description "Nonlinear WaveGuide Flute from STK"; -declare author "Romain Michon"; -declare copyright "Romain Michon (rmichon@ccrma.stanford.edu)"; -declare version "1.0"; -declare licence "STK-4.3"; // Synthesis Tool Kit 4.3 (MIT style license); -declare description "A simple flute physical model, as discussed by Karjalainen, Smith, Waryznyk, etc. The jet model uses a polynomial, a la Cook."; -declare reference "https://ccrma.stanford.edu/~jos/pasp/Flutes_Recorders_Pipe_Organs.html"; - -import("music.lib"); -import("instrument.lib"); - -//==================== GUI SPECIFICATION ================ - -freq = nentry("h:Basic_Parameters/freq [1][unit:Hz] [tooltip:Tone frequency]",440,20,20000,1); -gain = nentry("h:Basic_Parameters/gain [1][tooltip:Gain (value between 0 and 1)]",1,0,1,0.01); -gate = button("h:Basic_Parameters/gate [1][tooltip:noteOn = 1, noteOff = 0]"); - -embouchureAjust = hslider("h:Physical_and_Nonlinearity/v:Physical_Parameters/Embouchure_Ajust -[2][tooltip:A value between 0 and 1]",0.5,0,1,0.01); -noiseGain = hslider("h:Physical_and_Nonlinearity/v:Physical_Parameters/Noise_Gain -[2][tooltip:A value between 0 and 1]",0.03,0,1,0.01); -pressure = hslider("h:Physical_and_Nonlinearity/v:Physical_Parameters/Pressure -[2][tooltip:Breath pressure (value between 0 and 1)]",1,0,1,0.01); - -typeModulation = nentry("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Modulation_Type -[3][tooltip: 0=theta is modulated by the incoming signal; 1=theta is modulated by the averaged incoming signal; -2=theta is modulated by the squared incoming signal; 3=theta is modulated by a sine wave of frequency freqMod; -4=theta is modulated by a sine wave of frequency freq;]",0,0,4,1); -nonLinearity = hslider("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Nonlinearity -[3][tooltip:Nonlinearity factor (value between 0 and 1)]",0,0,1,0.01); -frequencyMod = hslider("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Modulation_Frequency -[3][unit:Hz][tooltip:Frequency of the sine wave for the modulation of theta (works if Modulation Type=3)]",220,20,1000,0.1); -nonLinAttack = hslider("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Nonlinearity_Attack -[3][unit:s][Attack duration of the nonlinearity]",0.1,0,2,0.01); - -vibratoFreq = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Freq -[4][unit:Hz]",6,1,15,0.1); -vibratoGain = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Gain -[4][tooltip:A value between 0 and 1]",0.05,0,1,0.01); -vibratoBegin = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Begin -[4][unit:s][tooltip:Vibrato silence duration before attack]",0.05,0,2,0.01); -vibratoAttack = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Attack -[4][unit:s][tooltip:Vibrato attack duration]",0.5,0,2,0.01); -vibratoRelease = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Release -[4][unit:s][tooltip:Vibrato release duration]",0.1,0,2,0.01); - -envelopeAttack = hslider("h:Envelopes_and_Vibrato/v:Envelope_Parameters/Envelope_Attack -[5][unit:s][tooltip:Envelope attack duration]",0.03,0,2,0.01); -envelopeDecay = hslider("h:Envelopes_and_Vibrato/v:Envelope_Parameters/Envelope_Decay -[5][unit:s][tooltip:Envelope decay duration]",0.01,0,2,0.01); -envelopeRelease = hslider("h:Envelopes_and_Vibrato/v:Envelope_Parameters/Envelope_Release -[5][unit:s][tooltip:Envelope release duration]",0.3,0,2,0.01); - -//==================== SIGNAL PROCESSING ================ - -//----------------------- Nonlinear filter ---------------------------- -//nonlinearities are created by the nonlinear passive allpass ladder filter declared in filter.lib - -//nonlinear filter order -nlfOrder = 6; - -//attack - sustain - release envelope for nonlinearity (declared in instrument.lib) -envelopeMod = asr(nonLinAttack,100,envelopeRelease,gate); - -//nonLinearModultor is declared in instrument.lib, it adapts allpassnn from filter.lib -//for using it with waveguide instruments -NLFM = nonLinearModulator((nonLinearity : smooth(0.999)),envelopeMod,freq, - typeModulation,(frequencyMod : smooth(0.999)),nlfOrder); - -//----------------------- Synthesis parameters computing and functions declaration ---------------------------- - -jetReflexion = 0.5; -//jetRatio = 0.08 + (0.48*embouchureAjust); //original stk function -jetRatio = 1+(0.5-embouchureAjust); //corrected function -endReflexion = 0.5; - -//Delay lines lengths in number of samples -//jetDelayLength = (SR/freq-2)*jetRatio; //original stk function for jet delay length -jetDelayLength = (SR/(freq*2)-2)*jetRatio; //corrected function for jet delay length -boreDelayLength = SR/(freq*2)-2; //original function for bore delay length -//boreDelayLength = SR/(freq)-2; //corrected function for bore delay length -filterPole = 0.7 - (0.1*22050/SR); - -//One Pole Filter (declared in instrument.lib) -onePoleFilter = _*gain : onePole(b0,a1) - with{ - gain = -1; - pole = 0.7 - (0.1*22050/SR); - b0 = 1 - pole; - a1 = -pole; - }; - -//stereoizer is declared in instrument.lib and implement a stereo spacialisation in function of -//the frequency period in number of samples -stereo = stereoizer(SR/freq); - -//----------------------- Algorithm implementation ---------------------------- - -//the vibrato amplitude is controled by an envelope generator (declared in instrument.lib) -vibrato = vibratoGain*envVibrato(vibratoBegin,vibratoAttack,100,vibratoRelease,gate)*osc(vibratoFreq); - -//Breath pressure is controlled by an Attack / Decay / Sustain / Release envelope -envelopeBreath = pressure*adsr(pressure*envelopeAttack,envelopeDecay,80,envelopeRelease,gate); -breathPressure = envelopeBreath + envelopeBreath*(noiseGain*noise + vibrato) + 10.0^(-15.0); - -//delay lines -jetDelay = fdelay(4096,jetDelayLength); -boreDelay = fdelay(4096,boreDelayLength); - -//reflexion filter is a one pole and a dcblocker -reflexionFilters = onePoleFilter : dcblocker; - -process = - (reflexionFilters <: - //Differential Pressure - ((breathPressure - _*jetReflexion) : - jetDelay : jetTable) + (_*endReflexion)) ~ (boreDelay : NLFM) : - //output scaling and stereo signal - *(0.3*gain) : stereo : instrReverb; -