X-Git-Url: https://scm.cri.ensmp.fr/git/Faustine.git/blobdiff_plain/1059e1cc0c2ecfa237406949aa26155b6a5b9154:/interpretor/lib/src/libsndfile-1.0.25/src/G72x/g72x.c..66f23d4fabf89ad09adbd4dfc15ac6b5b2b7da83:/interpreter/lib/src/libsndfile-1.0.25/src/G72x/static/gitweb.js diff --git a/interpretor/lib/src/libsndfile-1.0.25/src/G72x/g72x.c b/interpretor/lib/src/libsndfile-1.0.25/src/G72x/g72x.c deleted file mode 100644 index 3fae81a..0000000 --- a/interpretor/lib/src/libsndfile-1.0.25/src/G72x/g72x.c +++ /dev/null @@ -1,644 +0,0 @@ -/* - * This source code is a product of Sun Microsystems, Inc. and is provided - * for unrestricted use. Users may copy or modify this source code without - * charge. - * - * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING - * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR - * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. - * - * Sun source code is provided with no support and without any obligation on - * the part of Sun Microsystems, Inc. to assist in its use, correction, - * modification or enhancement. - * - * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE - * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE - * OR ANY PART THEREOF. - * - * In no event will Sun Microsystems, Inc. be liable for any lost revenue - * or profits or other special, indirect and consequential damages, even if - * Sun has been advised of the possibility of such damages. - * - * Sun Microsystems, Inc. - * 2550 Garcia Avenue - * Mountain View, California 94043 - */ - -/* - * g72x.c - * - * Common routines for G.721 and G.723 conversions. - */ - -#include -#include -#include - -#include "g72x.h" -#include "g72x_priv.h" - -static G72x_STATE * g72x_state_new (void) ; -static int unpack_bytes (int bits, int blocksize, const unsigned char * block, short * samples) ; -static int pack_bytes (int bits, const short * samples, unsigned char * block) ; - -static -short power2 [15] = -{ 1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80, - 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000 -} ; - -/* - * quan() - * - * quantizes the input val against the table of size short integers. - * It returns i if table[i - 1] <= val < table[i]. - * - * Using linear search for simple coding. - */ -static -int quan (int val, short *table, int size) -{ - int i; - - for (i = 0; i < size; i++) - if (val < *table++) - break; - return (i); -} - -/* - * fmult() - * - * returns the integer product of the 14-bit integer "an" and - * "floating point" representation (4-bit exponent, 6-bit mantessa) "srn". - */ -static -int fmult (int an, int srn) -{ - short anmag, anexp, anmant; - short wanexp, wanmant; - short retval; - - anmag = (an > 0) ? an : ((-an) & 0x1FFF); - anexp = quan(anmag, power2, 15) - 6; - anmant = (anmag == 0) ? 32 : - (anexp >= 0) ? anmag >> anexp : anmag << -anexp; - wanexp = anexp + ((srn >> 6) & 0xF) - 13; - - /* - ** The original was : - ** wanmant = (anmant * (srn & 0x3F) + 0x30) >> 4 ; - ** but could see no valid reason for the + 0x30. - ** Removed it and it improved the SNR of the codec. - */ - - wanmant = (anmant * (srn & 0x3F)) >> 4 ; - - retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) : - (wanmant >> -wanexp); - - return (((an ^ srn) < 0) ? -retval : retval); -} - -static G72x_STATE * g72x_state_new (void) -{ return calloc (1, sizeof (G72x_STATE)) ; -} - -/* - * private_init_state() - * - * This routine initializes and/or resets the G72x_PRIVATE structure - * pointed to by 'state_ptr'. - * All the initial state values are specified in the CCITT G.721 document. - */ -void private_init_state (G72x_STATE *state_ptr) -{ - int cnta; - - state_ptr->yl = 34816; - state_ptr->yu = 544; - state_ptr->dms = 0; - state_ptr->dml = 0; - state_ptr->ap = 0; - for (cnta = 0; cnta < 2; cnta++) { - state_ptr->a[cnta] = 0; - state_ptr->pk[cnta] = 0; - state_ptr->sr[cnta] = 32; - } - for (cnta = 0; cnta < 6; cnta++) { - state_ptr->b[cnta] = 0; - state_ptr->dq[cnta] = 32; - } - state_ptr->td = 0; -} /* private_init_state */ - -struct g72x_state * g72x_reader_init (int codec, int *blocksize, int *samplesperblock) -{ G72x_STATE *pstate ; - - if ((pstate = g72x_state_new ()) == NULL) - return NULL ; - - private_init_state (pstate) ; - - pstate->encoder = NULL ; - - switch (codec) - { case G723_16_BITS_PER_SAMPLE : /* 2 bits per sample. */ - pstate->decoder = g723_16_decoder ; - *blocksize = G723_16_BYTES_PER_BLOCK ; - *samplesperblock = G723_16_SAMPLES_PER_BLOCK ; - pstate->codec_bits = 2 ; - pstate->blocksize = G723_16_BYTES_PER_BLOCK ; - pstate->samplesperblock = G723_16_SAMPLES_PER_BLOCK ; - break ; - - case G723_24_BITS_PER_SAMPLE : /* 3 bits per sample. */ - pstate->decoder = g723_24_decoder ; - *blocksize = G723_24_BYTES_PER_BLOCK ; - *samplesperblock = G723_24_SAMPLES_PER_BLOCK ; - pstate->codec_bits = 3 ; - pstate->blocksize = G723_24_BYTES_PER_BLOCK ; - pstate->samplesperblock = G723_24_SAMPLES_PER_BLOCK ; - break ; - - case G721_32_BITS_PER_SAMPLE : /* 4 bits per sample. */ - pstate->decoder = g721_decoder ; - *blocksize = G721_32_BYTES_PER_BLOCK ; - *samplesperblock = G721_32_SAMPLES_PER_BLOCK ; - pstate->codec_bits = 4 ; - pstate->blocksize = G721_32_BYTES_PER_BLOCK ; - pstate->samplesperblock = G721_32_SAMPLES_PER_BLOCK ; - break ; - - case G721_40_BITS_PER_SAMPLE : /* 5 bits per sample. */ - pstate->decoder = g723_40_decoder ; - *blocksize = G721_40_BYTES_PER_BLOCK ; - *samplesperblock = G721_40_SAMPLES_PER_BLOCK ; - pstate->codec_bits = 5 ; - pstate->blocksize = G721_40_BYTES_PER_BLOCK ; - pstate->samplesperblock = G721_40_SAMPLES_PER_BLOCK ; - break ; - - default : - free (pstate) ; - return NULL ; - } ; - - return pstate ; -} /* g72x_reader_init */ - -struct g72x_state * g72x_writer_init (int codec, int *blocksize, int *samplesperblock) -{ G72x_STATE *pstate ; - - if ((pstate = g72x_state_new ()) == NULL) - return NULL ; - - private_init_state (pstate) ; - pstate->decoder = NULL ; - - switch (codec) - { case G723_16_BITS_PER_SAMPLE : /* 2 bits per sample. */ - pstate->encoder = g723_16_encoder ; - *blocksize = G723_16_BYTES_PER_BLOCK ; - *samplesperblock = G723_16_SAMPLES_PER_BLOCK ; - pstate->codec_bits = 2 ; - pstate->blocksize = G723_16_BYTES_PER_BLOCK ; - pstate->samplesperblock = G723_16_SAMPLES_PER_BLOCK ; - break ; - - case G723_24_BITS_PER_SAMPLE : /* 3 bits per sample. */ - pstate->encoder = g723_24_encoder ; - *blocksize = G723_24_BYTES_PER_BLOCK ; - *samplesperblock = G723_24_SAMPLES_PER_BLOCK ; - pstate->codec_bits = 3 ; - pstate->blocksize = G723_24_BYTES_PER_BLOCK ; - pstate->samplesperblock = G723_24_SAMPLES_PER_BLOCK ; - break ; - - case G721_32_BITS_PER_SAMPLE : /* 4 bits per sample. */ - pstate->encoder = g721_encoder ; - *blocksize = G721_32_BYTES_PER_BLOCK ; - *samplesperblock = G721_32_SAMPLES_PER_BLOCK ; - pstate->codec_bits = 4 ; - pstate->blocksize = G721_32_BYTES_PER_BLOCK ; - pstate->samplesperblock = G721_32_SAMPLES_PER_BLOCK ; - break ; - - case G721_40_BITS_PER_SAMPLE : /* 5 bits per sample. */ - pstate->encoder = g723_40_encoder ; - *blocksize = G721_40_BYTES_PER_BLOCK ; - *samplesperblock = G721_40_SAMPLES_PER_BLOCK ; - pstate->codec_bits = 5 ; - pstate->blocksize = G721_40_BYTES_PER_BLOCK ; - pstate->samplesperblock = G721_40_SAMPLES_PER_BLOCK ; - break ; - - default : - free (pstate) ; - return NULL ; - } ; - - return pstate ; -} /* g72x_writer_init */ - -int g72x_decode_block (G72x_STATE *pstate, const unsigned char *block, short *samples) -{ int k, count ; - - count = unpack_bytes (pstate->codec_bits, pstate->blocksize, block, samples) ; - - for (k = 0 ; k < count ; k++) - samples [k] = pstate->decoder (samples [k], pstate) ; - - return 0 ; -} /* g72x_decode_block */ - -int g72x_encode_block (G72x_STATE *pstate, short *samples, unsigned char *block) -{ int k, count ; - - for (k = 0 ; k < pstate->samplesperblock ; k++) - samples [k] = pstate->encoder (samples [k], pstate) ; - - count = pack_bytes (pstate->codec_bits, samples, block) ; - - return count ; -} /* g72x_encode_block */ - -/* - * predictor_zero() - * - * computes the estimated signal from 6-zero predictor. - * - */ -int predictor_zero (G72x_STATE *state_ptr) -{ - int i; - int sezi; - - sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]); - for (i = 1; i < 6; i++) /* ACCUM */ - sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]); - return (sezi); -} -/* - * predictor_pole() - * - * computes the estimated signal from 2-pole predictor. - * - */ -int predictor_pole(G72x_STATE *state_ptr) -{ - return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) + - fmult(state_ptr->a[0] >> 2, state_ptr->sr[0])); -} -/* - * step_size() - * - * computes the quantization step size of the adaptive quantizer. - * - */ -int step_size (G72x_STATE *state_ptr) -{ - int y; - int dif; - int al; - - if (state_ptr->ap >= 256) - return (state_ptr->yu); - else { - y = state_ptr->yl >> 6; - dif = state_ptr->yu - y; - al = state_ptr->ap >> 2; - if (dif > 0) - y += (dif * al) >> 6; - else if (dif < 0) - y += (dif * al + 0x3F) >> 6; - return (y); - } -} - -/* - * quantize() - * - * Given a raw sample, 'd', of the difference signal and a - * quantization step size scale factor, 'y', this routine returns the - * ADPCM codeword to which that sample gets quantized. The step - * size scale factor division operation is done in the log base 2 domain - * as a subtraction. - */ -int quantize( - int d, /* Raw difference signal sample */ - int y, /* Step size multiplier */ - short *table, /* quantization table */ - int size) /* table size of short integers */ -{ - short dqm; /* Magnitude of 'd' */ - short expon; /* Integer part of base 2 log of 'd' */ - short mant; /* Fractional part of base 2 log */ - short dl; /* Log of magnitude of 'd' */ - short dln; /* Step size scale factor normalized log */ - int i; - - /* - * LOG - * - * Compute base 2 log of 'd', and store in 'dl'. - */ - dqm = abs(d); - expon = quan(dqm >> 1, power2, 15); - mant = ((dqm << 7) >> expon) & 0x7F; /* Fractional portion. */ - dl = (expon << 7) + mant; - - /* - * SUBTB - * - * "Divide" by step size multiplier. - */ - dln = dl - (y >> 2); - - /* - * QUAN - * - * Obtain codword i for 'd'. - */ - i = quan(dln, table, size); - if (d < 0) /* take 1's complement of i */ - return ((size << 1) + 1 - i); - else if (i == 0) /* take 1's complement of 0 */ - return ((size << 1) + 1); /* new in 1988 */ - else - return (i); -} -/* - * reconstruct() - * - * Returns reconstructed difference signal 'dq' obtained from - * codeword 'i' and quantization step size scale factor 'y'. - * Multiplication is performed in log base 2 domain as addition. - */ -int -reconstruct( - int sign, /* 0 for non-negative value */ - int dqln, /* G.72x codeword */ - int y) /* Step size multiplier */ -{ - short dql; /* Log of 'dq' magnitude */ - short dex; /* Integer part of log */ - short dqt; - short dq; /* Reconstructed difference signal sample */ - - dql = dqln + (y >> 2); /* ADDA */ - - if (dql < 0) { - return ((sign) ? -0x8000 : 0); - } else { /* ANTILOG */ - dex = (dql >> 7) & 15; - dqt = 128 + (dql & 127); - dq = (dqt << 7) >> (14 - dex); - return ((sign) ? (dq - 0x8000) : dq); - } -} - - -/* - * update() - * - * updates the state variables for each output code - */ -void -update( - int code_size, /* distinguish 723_40 with others */ - int y, /* quantizer step size */ - int wi, /* scale factor multiplier */ - int fi, /* for long/short term energies */ - int dq, /* quantized prediction difference */ - int sr, /* reconstructed signal */ - int dqsez, /* difference from 2-pole predictor */ - G72x_STATE *state_ptr) /* coder state pointer */ -{ - int cnt; - short mag, expon; /* Adaptive predictor, FLOAT A */ - short a2p = 0; /* LIMC */ - short a1ul; /* UPA1 */ - short pks1; /* UPA2 */ - short fa1; - char tr; /* tone/transition detector */ - short ylint, thr2, dqthr; - short ylfrac, thr1; - short pk0; - - pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */ - - mag = dq & 0x7FFF; /* prediction difference magnitude */ - /* TRANS */ - ylint = state_ptr->yl >> 15; /* exponent part of yl */ - ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */ - thr1 = (32 + ylfrac) << ylint; /* threshold */ - thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */ - dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */ - if (state_ptr->td == 0) /* signal supposed voice */ - tr = 0; - else if (mag <= dqthr) /* supposed data, but small mag */ - tr = 0; /* treated as voice */ - else /* signal is data (modem) */ - tr = 1; - - /* - * Quantizer scale factor adaptation. - */ - - /* FUNCTW & FILTD & DELAY */ - /* update non-steady state step size multiplier */ - state_ptr->yu = y + ((wi - y) >> 5); - - /* LIMB */ - if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */ - state_ptr->yu = 544; - else if (state_ptr->yu > 5120) - state_ptr->yu = 5120; - - /* FILTE & DELAY */ - /* update steady state step size multiplier */ - state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6); - - /* - * Adaptive predictor coefficients. - */ - if (tr == 1) { /* reset a's and b's for modem signal */ - state_ptr->a[0] = 0; - state_ptr->a[1] = 0; - state_ptr->b[0] = 0; - state_ptr->b[1] = 0; - state_ptr->b[2] = 0; - state_ptr->b[3] = 0; - state_ptr->b[4] = 0; - state_ptr->b[5] = 0; - } else { /* update a's and b's */ - pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */ - - /* update predictor pole a[1] */ - a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7); - if (dqsez != 0) { - fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0]; - if (fa1 < -8191) /* a2p = function of fa1 */ - a2p -= 0x100; - else if (fa1 > 8191) - a2p += 0xFF; - else - a2p += fa1 >> 5; - - if (pk0 ^ state_ptr->pk[1]) - { /* LIMC */ - if (a2p <= -12160) - a2p = -12288; - else if (a2p >= 12416) - a2p = 12288; - else - a2p -= 0x80; - } - else if (a2p <= -12416) - a2p = -12288; - else if (a2p >= 12160) - a2p = 12288; - else - a2p += 0x80; - } - - /* TRIGB & DELAY */ - state_ptr->a[1] = a2p; - - /* UPA1 */ - /* update predictor pole a[0] */ - state_ptr->a[0] -= state_ptr->a[0] >> 8; - if (dqsez != 0) - { if (pks1 == 0) - state_ptr->a[0] += 192; - else - state_ptr->a[0] -= 192; - } ; - - /* LIMD */ - a1ul = 15360 - a2p; - if (state_ptr->a[0] < -a1ul) - state_ptr->a[0] = -a1ul; - else if (state_ptr->a[0] > a1ul) - state_ptr->a[0] = a1ul; - - /* UPB : update predictor zeros b[6] */ - for (cnt = 0; cnt < 6; cnt++) { - if (code_size == 5) /* for 40Kbps G.723 */ - state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9; - else /* for G.721 and 24Kbps G.723 */ - state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8; - if (dq & 0x7FFF) { /* XOR */ - if ((dq ^ state_ptr->dq[cnt]) >= 0) - state_ptr->b[cnt] += 128; - else - state_ptr->b[cnt] -= 128; - } - } - } - - for (cnt = 5; cnt > 0; cnt--) - state_ptr->dq[cnt] = state_ptr->dq[cnt-1]; - /* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */ - if (mag == 0) { - state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20; - } else { - expon = quan(mag, power2, 15); - state_ptr->dq[0] = (dq >= 0) ? - (expon << 6) + ((mag << 6) >> expon) : - (expon << 6) + ((mag << 6) >> expon) - 0x400; - } - - state_ptr->sr[1] = state_ptr->sr[0]; - /* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */ - if (sr == 0) { - state_ptr->sr[0] = 0x20; - } else if (sr > 0) { - expon = quan(sr, power2, 15); - state_ptr->sr[0] = (expon << 6) + ((sr << 6) >> expon); - } else if (sr > -32768) { - mag = -sr; - expon = quan(mag, power2, 15); - state_ptr->sr[0] = (expon << 6) + ((mag << 6) >> expon) - 0x400; - } else - state_ptr->sr[0] = (short) 0xFC20; - - /* DELAY A */ - state_ptr->pk[1] = state_ptr->pk[0]; - state_ptr->pk[0] = pk0; - - /* TONE */ - if (tr == 1) /* this sample has been treated as data */ - state_ptr->td = 0; /* next one will be treated as voice */ - else if (a2p < -11776) /* small sample-to-sample correlation */ - state_ptr->td = 1; /* signal may be data */ - else /* signal is voice */ - state_ptr->td = 0; - - /* - * Adaptation speed control. - */ - state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */ - state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */ - - if (tr == 1) - state_ptr->ap = 256; - else if (y < 1536) /* SUBTC */ - state_ptr->ap += (0x200 - state_ptr->ap) >> 4; - else if (state_ptr->td == 1) - state_ptr->ap += (0x200 - state_ptr->ap) >> 4; - else if (abs((state_ptr->dms << 2) - state_ptr->dml) >= - (state_ptr->dml >> 3)) - state_ptr->ap += (0x200 - state_ptr->ap) >> 4; - else - state_ptr->ap += (-state_ptr->ap) >> 4; - - return ; -} /* update */ - -/*------------------------------------------------------------------------------ -*/ - -static int -unpack_bytes (int bits, int blocksize, const unsigned char * block, short * samples) -{ unsigned int in_buffer = 0 ; - unsigned char in_byte ; - int k, in_bits = 0, bindex = 0 ; - - for (k = 0 ; bindex <= blocksize && k < G72x_BLOCK_SIZE ; k++) - { if (in_bits < bits) - { in_byte = block [bindex++] ; - - in_buffer |= (in_byte << in_bits); - in_bits += 8; - } - samples [k] = in_buffer & ((1 << bits) - 1); - in_buffer >>= bits; - in_bits -= bits; - } ; - - return k ; -} /* unpack_bytes */ - -static int -pack_bytes (int bits, const short * samples, unsigned char * block) -{ - unsigned int out_buffer = 0 ; - int k, bindex = 0, out_bits = 0 ; - unsigned char out_byte ; - - for (k = 0 ; k < G72x_BLOCK_SIZE ; k++) - { out_buffer |= (samples [k] << out_bits) ; - out_bits += bits ; - if (out_bits >= 8) - { out_byte = out_buffer & 0xFF ; - out_bits -= 8 ; - out_buffer >>= 8 ; - block [bindex++] = out_byte ; - } - } ; - - return bindex ; -} /* pack_bytes */ -