X-Git-Url: https://scm.cri.ensmp.fr/git/Faustine.git/blobdiff_plain/a6a80a5868c766f1a5360fd27f132fad425f8fe5..a891a827a9bad83d44164ffdd7b28f070c439e46:/interpretor/interpreter.ml diff --git a/interpretor/interpreter.ml b/interpretor/interpreter.ml deleted file mode 100644 index 226fadf..0000000 --- a/interpretor/interpreter.ml +++ /dev/null @@ -1,498 +0,0 @@ -(** - Module: Interpreter - Description: input beam -> process -> output beam - @author WANG Haisheng - Created: 15/05/2013 Modified: 04/06/2013 -*) - -open Types;; -open Value;; -open Signal;; -open Faustexp;; - -(* EXCEPTIONS *) - -(** Exception raised during interpretation of faust process.*) -exception Evaluation_Error of string;; - - - -(* MACRO *) - -(** Macro constants of this file.*) -type interpreter_macro = - | Number_samples_int - | Max_Eval_Time_int;; - -(** val interpreter_macro_to_value : returns the value associated with the macro.*) -let interpreter_macro_to_value m = match m with - | Number_samples_int -> 0xFFFFF - | Max_Eval_Time_int -> 0xFFFFFFFF;; - - -(* OUTPUT WAVE COMPUTATION *) - -(** val func_of_func_array : (int -> value) array -> (int -> value array), -applies the same int parameter to each element of function array, -produces a value array.*) -let fun_array_to_fun = fun fun_array -> - let reverse = fun t -> fun f -> f t in - let new_fun = fun t-> Array.map (reverse t) fun_array in - new_fun;; - - -(** val computing : (int -> value array) -> int -> int -> float array array array, -applies time sequence "0,1,2,3,...,max" to signal beam, -returns primitive output data.*) -let computing = fun f -> fun width -> fun length -> - let container_float_array_array_array = - ref (Array.make length (Array.make width [||])) in - let index = ref 0 in - - try - while !index < length do - (!container_float_array_array_array).(!index) - <- (Array.map convert_back_R (f (!index))); - incr index; - done; - !container_float_array_array_array - - with x -> - let error_message = - match x with - |Convert_Error s -> "Convert_Error: " ^ s - |Value_operation s -> "Value_operation: " ^ s - |Signal_operation s -> "Signal_operation: " ^ s - |Beam_Matching_Error s -> "Beam_Matching_Error: " ^ s - |Evaluation_Error s -> "Evaluation_Error: " ^ s - |NotYetDone -> "NotYetDone" - |_ -> "Compute finished." - in - let () = print_endline error_message in - Array.sub (!container_float_array_array_array) 0 !index;; - - -(** val matrix_transpose : 'a array array -> 'a array array, -transposes the input matrix.*) -let matrix_transpose = fun m_array_array -> fun width -> - let get_element = fun i -> fun array -> Array.get array i in - let get_line = fun array_array -> fun i -> - Array.map (get_element i) array_array in - let transpose array_array = Array.init width (get_line array_array) in - transpose m_array_array;; - - -(** val channels : 'a array array array -> int -> int array, -returns an array of number of channels. *) -let channels = fun f_array_array_array -> fun width -> - let channel = fun faaa -> fun i -> - let faa = faaa.(i) in - let length = Array.length faa in - let fa = faa.(length - 1) in - Array.length fa - in - let channel_array = Array.init width (channel f_array_array_array) in - channel_array;; - - -(** val arrange : 'a array array array -> int -> 'a array list, -arranges the output data in "array list" form. *) -let arrange = fun float_array_array_array -> fun width -> - let concat faaa = fun i -> - let faa = faaa.(i) in - Array.concat (Array.to_list faa) - in - let float_array_array = Array.init width (concat float_array_array_array) in - let float_array_list = Array.to_list float_array_array in - float_array_list;; - - -(** val compute : (int -> value) list -> (int list) * (float array list). -input: a list of signal functions -output: channel number list, data list.*) -let compute fun_list = - let () = print_endline("Computing output signals...") in - - (* arrange input information *) - let length = interpreter_macro_to_value Number_samples_int in - let width = List.length fun_list in - let beam_fun = fun_array_to_fun (Array.of_list fun_list) in - - (* calculate output wave *) - let tmp_float_array_array_array = computing beam_fun width length in - - (* arrange output data *) - let output_float_array_array_array = matrix_transpose tmp_float_array_array_array width in - let channel_array = channels output_float_array_array_array width in - let channel_list = Array.to_list channel_array in - let output_float_array_list = arrange output_float_array_array_array width in - (channel_list, output_float_array_list);; - - - -(* INTERPRETATION *) - -(** val sublist : 'a list -> int -> int -> 'a list, -[sublist l start length], returns the sublist of list 'l', -from index 'start', with length 'length'.*) -let sublist l start length = - try - let arr = Array.of_list l in - let sub_array = Array.sub arr start length in - Array.to_list sub_array - - with (Invalid_argument "Array.sub") -> - raise (Invalid_argument "List.sub");; - - -(** val make_beam : (int list) * (float array list) -> (int * (int -> value)) list, -input: (sample rate list, data list) -output: beam = (sample rate, function) list *) -let make_beam = fun input -> - let rate_list = fst input in - let float_array_list = snd input in - let value_array_list = - List.map (Array.map return_R) float_array_list in - let fun_list = List.map Array.get value_array_list in - let make_signal = fun rate -> fun f -> (rate, f) in - let beam = List.map2 make_signal rate_list fun_list in - beam;; - - -(** val interpret_const : value -> beam -> beam, generates constant signal with frequency 0. *) -let interpret_const = fun v -> fun input_beam -> - let n = List.length input_beam in - if n = 0 then [(0,(fun t -> v))] - else raise (Evaluation_Error "Const");; - - -(** val interpret_ident : string -> beam -> beam, -generates signals according to identified symbols. *) -let interpret_ident = fun s -> fun input_beam -> - let n = List.length input_beam in - match s with - |Pass -> if n = 1 then input_beam else raise (Evaluation_Error "Ident _") - - |Stop -> if n = 1 then [] else raise (Evaluation_Error "Ident !") - - |Add -> if n = 2 then [signal_add (List.nth input_beam 0) (List.nth input_beam 1)] - else raise (Evaluation_Error "Ident +") - - |Sup -> if n = 2 then [signal_sub (List.nth input_beam 0) (List.nth input_beam 1)] - else raise (Evaluation_Error "Ident -") - - |Mul -> if n = 2 then [signal_mul (List.nth input_beam 0) (List.nth input_beam 1)] - else raise (Evaluation_Error "Ident *") - - |Div -> if n = 2 then [signal_div (List.nth input_beam 0) (List.nth input_beam 1)] - else raise (Evaluation_Error "Ident /") - - |Delay -> if n = 2 then [signal_delay (List.nth input_beam 0) (List.nth input_beam 1)] - else raise (Evaluation_Error "Ident @") - - |Mem -> if n = 1 then [signal_mem (List.nth input_beam 0)] - else raise (Evaluation_Error "Ident mem") - - |Vectorize -> if n = 2 then [signal_vectorize (List.nth input_beam 0) (List.nth input_beam 1)] - else raise (Evaluation_Error "Ident vectorize") - - |Serialize -> if n = 1 then [signal_serialize (List.nth input_beam 0)] - else raise (Evaluation_Error "Ident serialize") - - |Concat -> if n = 2 then [signal_append (List.nth input_beam 0) (List.nth input_beam 1)] - else raise (Evaluation_Error "Ident #") - - |Nth -> if n = 2 then [signal_nth (List.nth input_beam 0) (List.nth input_beam 1)] - else raise (Evaluation_Error "Ident []") - - |Floor -> if n = 1 then [signal_floor (List.nth input_beam 0)] - else raise (Evaluation_Error "Ident floor") - - |Int -> if n = 1 then [signal_int (List.nth input_beam 0)] - else raise (Evaluation_Error "Ident int") - - |Sin -> if n = 1 then [signal_sin (List.nth input_beam 0)] - else raise (Evaluation_Error "Ident sin") - - |Rdtable -> if n = 3 then [signal_rdtable (List.nth input_beam 0) - (List.nth input_beam 1) (List.nth input_beam 2)] - else raise (Evaluation_Error "Ident rdtable") - - |Selecttwo -> if n = 3 then [signal_select2 (List.nth input_beam 0) (List.nth input_beam 1) - (List.nth input_beam 2)] - else raise (Evaluation_Error "Ident select2") - - |Selectthree -> if n = 4 then [signal_select3 (List.nth input_beam 0) (List.nth input_beam 1) - (List.nth input_beam 2) (List.nth input_beam 3)] - else raise (Evaluation_Error "Ident select3") - - |Prefix -> if n = 2 then [signal_prefix (List.nth input_beam 0) (List.nth input_beam 1)] - else raise (Evaluation_Error "Ident prefix") - - |Mod -> if n = 2 then [signal_mod (List.nth input_beam 0) (List.nth input_beam 1)] - else raise (Evaluation_Error "Ident %") - - |Larger -> if n = 2 then [signal_sup (List.nth input_beam 0) (List.nth input_beam 1)] - else raise (Evaluation_Error "Ident >") - - |Smaller -> if n = 2 then [signal_inf (List.nth input_beam 0) (List.nth input_beam 1)] - else raise (Evaluation_Error "Ident <");; - - - -(** val rec eval : faust_exp -> beam -> beam, -main interpretation work is done here. *) -let rec eval exp_faust dimension_tree input_beam = - - -(** val interpret_par : faust_exp -> faust_exp -> beam -> beam, -interprets par(e1, e2) with input beam, produces output beam.*) -let interpret_par = fun e1 -> fun e2 -> fun dimension_tree -> fun input_beam -> - - (* dimension information *) - let n = List.length input_beam in - let subtree1 = subtree_left dimension_tree in - let subtree2 = subtree_right dimension_tree in - let d1 = get_root subtree1 in - let d2 = get_root subtree2 in - - if n = (fst d1) + (fst d2) then - ( - (* segmentation of input beam *) - let input_beam1 = sublist input_beam 0 (fst d1) in - let input_beam2 = sublist input_beam (fst d1) (fst d2) in - - (* evaluate two expressions respectively *) - let output_beam1 = eval e1 subtree1 input_beam1 in - let output_beam2 = eval e2 subtree2 input_beam2 in - - (* concat two output beams *) - if List.length output_beam1 = snd d1 && List.length output_beam2 = snd d2 - then (output_beam1 @ output_beam2) - else raise (Evaluation_Error "Par") - ) - else raise (Evaluation_Error "Par") in - - -(** val interpret_seq : faust_exp -> faust_exp -> beam -> beam, -interprets seq(e1, e2) with input beam, produces output beam.*) -let interpret_seq = fun e1 -> fun e2 -> fun dimension_tree -> fun input_beam -> - - (* dimension information *) - let n = List.length input_beam in - let subtree1 = subtree_left dimension_tree in - let subtree2 = subtree_right dimension_tree in - let d1 = get_root subtree1 in - let d2 = get_root subtree2 in - - - if n = fst d1 then - ( - (* evaluate the first expression *) - let output_beam1 = eval e1 subtree1 input_beam in - - (* evaluate the second expression *) - if List.length output_beam1 = fst d2 - then eval e2 subtree2 output_beam1 - else raise (Evaluation_Error "Seq") - ) - else raise (Evaluation_Error "Seq") in - - -(** val interpret_split : faust_exp -> faust_exp -> beam -> beam, -interprets split(e1, e2) with input beam, produces output beam.*) -let interpret_split = fun e1 -> fun e2 -> fun dimension_tree -> fun input_beam -> - - (* dimension information *) - let n = List.length input_beam in - let subtree1 = subtree_left dimension_tree in - let subtree2 = subtree_right dimension_tree in - let d1 = get_root subtree1 in - let d2 = get_root subtree2 in - - - if n = fst d1 then - ( - (* evaluate the first expression *) - let output_beam1 = eval e1 subtree1 input_beam in - - (* beam matching *) - let ref_output_beam1 = ref (beam_add_one_memory output_beam1) in - let input_beam2 = List.concat - (Array.to_list (Array.make ((fst d2)/(List.length output_beam1)) !ref_output_beam1)) - in - - (* evaluate the second expression *) - if List.length input_beam2 = fst d2 - then eval e2 subtree2 input_beam2 - else raise (Evaluation_Error "Split") - ) - else raise (Evaluation_Error "Split") in - - -(** val interpret_merge : faust_exp -> faust_exp -> beam -> beam, -interprets merge(e1, e2) with input beam, produces output beam.*) -let interpret_merge = fun e1 -> fun e2 -> fun dimension_tree -> fun input_beam -> - - (* dimension information *) - let n = List.length input_beam in - let subtree1 = subtree_left dimension_tree in - let subtree2 = subtree_right dimension_tree in - let d1 = get_root subtree1 in - let d2 = get_root subtree2 in - - - if n = fst d1 then - ( - (* evaluate the first expression *) - let output_beam1 = eval e1 subtree1 input_beam in - - (* beam matching *) - let input_beam2 = - ( - let fois = (snd d1)/(fst d2) in - let ref_beam = ref (sublist output_beam1 0 (fst d2)) in - for i = 1 to fois - 1 do - let temp_beam = sublist output_beam1 (i*(fst d2)) (fst d2) in - ref_beam := List.map2 signal_add (!ref_beam) temp_beam; - done; - !ref_beam - ) - in - - (* evaluate the second expression *) - if List.length input_beam2 = fst d2 - then eval e2 subtree2 input_beam2 - else raise (Evaluation_Error "Merge") - ) - else raise (Evaluation_Error "Merge") in - - -(** val interpret_rec : faust_exp -> faust_exp -> beam -> beam, -interprets rec(e1, e2) with input beam, produces output beam.*) -let interpret_rec = fun e1 -> fun e2 -> fun dimension_tree -> fun input_beam -> - - (* dimension information *) - let subtree1 = subtree_left dimension_tree in - let subtree2 = subtree_right dimension_tree in - let d1 = get_root subtree1 in - let d2 = get_root subtree2 in - - (* estimate stockage size for delay *) - let delay_int = 1 + delay e2 + delay e1 in - - (* prepare stockage *) - let memory_hashtbl = Hashtbl.create delay_int in - let rate_list = ref (Array.to_list (Array.make (snd d1) 0)) in - - (** val apply_to : 'a -> ('a -> 'b) -> 'b *) - let apply_to = fun t -> fun f -> f t in - - (** val get_value_fun_list : (int -> (int list) * (value list)) -> (int -> value) list *) - let get_value_fun_list = fun beam_fun -> - let tmp = fun beam_fun -> fun i -> fun t -> - List.nth (snd (beam_fun t)) i in - List.map (tmp beam_fun) (Array.to_list (Array.init (snd d1) (fun n -> n))) in - - (** val make_signal : int -> (int -> value) -> signal, combines rate and function. *) - let make_signal = fun rate -> fun f -> (rate, f) in - - (** val output_beam_fun : int -> (int list) * (value list), with - input : time - output: rate list * value list *) - let rec output_beam_fun = fun t -> - - (* initial value in constrctor "rec '~'" *) - if t < 0 then - let init_rate_list = Array.to_list (Array.make (snd d1) 0) in - let value_list = Array.to_list (Array.make (snd d1) Zero) in - (init_rate_list, value_list) - - (* check stockage at time t *) - else if Hashtbl.mem memory_hashtbl t then - (!rate_list, Hashtbl.find memory_hashtbl t) - - (* blocks : "a ~ b", calculate rate list and value list at time t *) - else - (* mid_output_fun_list : (int -> value) list *) - let mid_output_fun_list = get_value_fun_list output_beam_fun in - - (* b_input_fun_list : (int -> value) list *) - let b_input_fun_list = List.map - (fun s -> fun t -> s (t - 1)) - (sublist mid_output_fun_list 0 (fst d2)) in - - (* b_input_beam : signal list *) - let b_input_beam = List.map2 make_signal - (sublist !rate_list 0 (fst d2)) - b_input_fun_list in - - (* evaluation of block "b" *) - let b_output_beam = (eval e2 subtree2 b_input_beam) in - - (* evaluation of block "a" *) - let a_input_beam = b_output_beam @ input_beam in - let mid_output_beam = eval e1 subtree1 a_input_beam in - - (* calculate rate list and value list at time t *) - let mid_output_rate_list = List.map fst mid_output_beam in - let mid_output_value_list = List.map (apply_to t) (List.map snd mid_output_beam) in - - (* update stockage *) - let () = (rate_list := mid_output_rate_list) in - let () = Hashtbl.add memory_hashtbl t mid_output_value_list in - let () = Hashtbl.remove memory_hashtbl (t - delay_int) in - (mid_output_rate_list, mid_output_value_list) in - - (* output_beam : signal list *) - let output_beam = List.map2 make_signal !rate_list (get_value_fun_list output_beam_fun) in - output_beam in - - - (** Call for previous functions *) - match exp_faust with - |Const v -> interpret_const v input_beam - |Ident s -> interpret_ident s input_beam - |Par (e1, e2) -> interpret_par e1 e2 dimension_tree input_beam - |Seq (e1, e2) -> interpret_seq e1 e2 dimension_tree input_beam - |Split (e1, e2) -> interpret_split e1 e2 dimension_tree input_beam - |Merge (e1, e2) -> interpret_merge e1 e2 dimension_tree input_beam - |Rec (e1, e2) -> interpret_rec e1 e2 dimension_tree input_beam;; - - -(** val extract_rate : (int * (int -> value)) list -> int list, -gets the sample rate list from beam.*) -let extract_rate = fun beam -> - let rate_naive_list = List.map fst beam in - let correct_rate r = - if r = 0 then 44100 - else if r > 0 then r - else raise (Evaluation_Error "Rec2") - in - let rate_list = List.map correct_rate rate_naive_list in - rate_list;; - - -(** val interpreter : faust_exp -> (int list) * (float array list) -> -(int list) * (int list) * (float array list) -input: faust expression, sample rate list * input data list -output: channel list * sample rate list * output data list.*) -let interpreter exp_faust input = - let () = print_endline("Interpretation...") in - - (* make input beam *) - let input_beam = make_beam input in - - (* estimate process dimension *) - let dimension_tree = dim exp_faust in - - (* interprete output beam *) - let output_beam = eval exp_faust dimension_tree input_beam in - - (* get rate list from output beam *) - let rate_list = extract_rate output_beam in - - (* get channel list and data list from output beam *) - let (channel_list, float_array_list) = compute (List.map snd output_beam) in - (channel_list, rate_list, float_array_list);; -