X-Git-Url: https://scm.cri.ensmp.fr/git/Faustine.git/blobdiff_plain/c7f552fd8888da2f0d8cfb228fe0f28d3df3a12c..b4b6f2ea75b9f0f3ca918f5b84016610bf7a4d4f:/interpretor/preprocessor/faust-0.9.47mr3/examples/faust-stk/blowBottle.dsp diff --git a/interpretor/preprocessor/faust-0.9.47mr3/examples/faust-stk/blowBottle.dsp b/interpretor/preprocessor/faust-0.9.47mr3/examples/faust-stk/blowBottle.dsp new file mode 100644 index 0000000..e68cf7b --- /dev/null +++ b/interpretor/preprocessor/faust-0.9.47mr3/examples/faust-stk/blowBottle.dsp @@ -0,0 +1,103 @@ +declare name "BlowBottle"; +declare description "Blown Bottle Instrument"; +declare author "Romain Michon (rmichon@ccrma.stanford.edu)"; +declare copyright "Romain Michon"; +declare version "1.0"; +declare licence "STK-4.3"; // Synthesis Tool Kit 4.3 (MIT style license); +declare description "This object implements a helmholtz resonator (biquad filter) with a polynomial jet excitation (a la Cook)."; + +import("math.lib"); +import("music.lib"); +import("instrument.lib"); + +//==================== GUI SPECIFICATION ================ + +freq = nentry("h:Basic_Parameters/freq [1][unit:Hz] [tooltip:Tone frequency]",440,20,20000,1); +gain = nentry("h:Basic_Parameters/gain [1][tooltip:Gain (value between 0 and 1)]",1,0,1,0.01); +gate = button("h:Basic_Parameters/gate [1][tooltip:noteOn = 1, noteOff = 0]"); + +noiseGain = hslider("h:Physical_and_Nonlinearity/v:Physical_Parameters/Noise_Gain +[2][tooltip:Breath noise gain (value between 0 and 1)]",0.5,0,1,0.01)*2; +pressure = hslider("h:Physical_and_Nonlinearity/v:Physical_Parameters/Pressure +[2][tooltip:Breath pressure (value bewteen 0 and 1)]",1,0,1,0.01); + +typeModulation = nentry("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Modulation_Type +[3][tooltip: 0=theta is modulated by the incoming signal; 1=theta is modulated by the averaged incoming signal; +2=theta is modulated by the squared incoming signal; 3=theta is modulated by a sine wave of frequency freqMod; +4=theta is modulated by a sine wave of frequency freq;]",0,0,4,1); +nonLinearity = hslider("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Nonlinearity +[3][tooltip:Nonlinearity factor (value between 0 and 1)]",0,0,1,0.01); +frequencyMod = hslider("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Modulation_Frequency +[3][unit:Hz][tooltip:Frequency of the sine wave for the modulation of theta (works if Modulation Type=3)]",220,20,1000,0.1); +nonLinAttack = hslider("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Nonlinearity_Attack +[3][unit:s][Attack duration of the nonlinearity]",0.1,0,2,0.01); + +vibratoFreq = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Freq +[4][unit:Hz]",5,1,15,0.1); +vibratoGain = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Gain +[4][tooltip:A value between 0 and 1]",0.1,0,1,0.01); +vibratoBegin = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Begin +[4][unit:s][tooltip:Vibrato silence duration before attack]",0.05,0,2,0.01); +vibratoAttack = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Attack +[4][unit:s][tooltip:Vibrato attack duration]",0.5,0,2,0.01); +vibratoRelease = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Release +[4][unit:s][tooltip:Vibrato release duration]",0.01,0,2,0.01); + +envelopeAttack = hslider("h:Envelopes_and_Vibrato/v:Envelope_Parameters/Envelope_Attack +[5][unit:s][tooltip:Envelope attack duration]",0.01,0,2,0.01); +envelopeDecay = hslider("h:Envelopes_and_Vibrato/v:Envelope_Parameters/Envelope_Decay +[5][unit:s][tooltip:Envelope decay duration]",0.01,0,2,0.01); +envelopeRelease = hslider("h:Envelopes_and_Vibrato/v:Envelope_Parameters/Envelope_Release +[5][unit:s][tooltip:Envelope release duration]",0.5,0,2,0.01); + + +//==================== SIGNAL PROCESSING ================ + +//----------------------- Nonlinear filter ---------------------------- +//nonlinearities are created by the nonlinear passive allpass ladder filter declared in filter.lib + +//nonlinear filter order +nlfOrder = 6; + +//attack - sustain - release envelope for nonlinearity (declared in instrument.lib) +envelopeMod = asr(nonLinAttack,100,envelopeRelease,gate); + +//nonLinearModultor is declared in instrument.lib, it adapts allpassnn from filter.lib +//for using it with waveguide instruments +NLFM = nonLinearModulator((nonLinearity : smooth(0.999)),envelopeMod,freq, +typeModulation,(frequencyMod : smooth(0.999)),nlfOrder); + +//----------------------- Synthesis parameters computing and functions declaration ---------------------------- + +//botlle radius +bottleRadius = 0.999; + +//stereoizer is declared in instrument.lib and implement a stereo spacialisation in function of +//the frequency period in number of samples +stereo = stereoizer(SR/freq); + +bandPassFilter = bandPass(freq,bottleRadius); + +//----------------------- Algorithm implementation ---------------------------- + +//global envelope is of type attack - decay - sustain - release +envelopeG = gain*adsr(gain*envelopeAttack,envelopeDecay,80,envelopeRelease,gate); + +//pressure envelope is also ADSR +envelope = pressure*adsr(gain*0.02,0.01,80,gain*0.2,gate); + +//vibrato +vibrato = osc(vibratoFreq)*vibratoGain*envVibrato(vibratoBegin,vibratoAttack,100,vibratoRelease,gate)*osc(vibratoFreq); + +//breat pressure +breathPressure = envelope + vibrato; + +//breath noise +randPressure = noiseGain*noise*breathPressure ; + +process = + //differential pressure + (-(breathPressure) <: + ((+(1))*randPressure : +(breathPressure)) - *(jetTable),_ : bandPassFilter,_)~NLFM : !,_ : + //signal scaling + dcblocker*envelopeG*0.5 : stereo : instrReverb;