X-Git-Url: https://scm.cri.ensmp.fr/git/Faustine.git/blobdiff_plain/c7f552fd8888da2f0d8cfb228fe0f28d3df3a12c..b4b6f2ea75b9f0f3ca918f5b84016610bf7a4d4f:/interpretor/preprocessor/faust-0.9.47mr3/examples/faust-stk/clarinet.dsp diff --git a/interpretor/preprocessor/faust-0.9.47mr3/examples/faust-stk/clarinet.dsp b/interpretor/preprocessor/faust-0.9.47mr3/examples/faust-stk/clarinet.dsp new file mode 100644 index 0000000..5031d22 --- /dev/null +++ b/interpretor/preprocessor/faust-0.9.47mr3/examples/faust-stk/clarinet.dsp @@ -0,0 +1,110 @@ +declare name "Clarinet"; +declare description "Nonlinear WaveGuide Clarinet"; +declare author "Romain Michon"; +declare copyright "Romain Michon (rmichon@ccrma.stanford.edu)"; +declare version "1.0"; +declare licence "STK-4.3"; // Synthesis Tool Kit 4.3 (MIT style license); +declare description "A simple clarinet physical model, as discussed by Smith (1986), McIntyre, Schumacher, Woodhouse (1983), and others."; +declare reference "https://ccrma.stanford.edu/~jos/pasp/Woodwinds.html"; + +import("music.lib"); +import("instrument.lib"); + +//==================== GUI SPECIFICATION ================ + +freq = nentry("h:Basic_Parameters/freq [1][unit:Hz] [tooltip:Tone frequency]",440,20,20000,1); +gain = nentry("h:Basic_Parameters/gain [1][tooltip:Gain (value between 0 and 1)]",1,0,1,0.01); +gate = button("h:Basic_Parameters/gate [1][tooltip:noteOn = 1, noteOff = 0]"); + +reedStiffness = hslider("h:Physical_and_Nonlinearity/v:Physical_Parameters/Reed_Stiffness +[2][tooltip:Reed stiffness (value between 0 and 1)]",0.5,0,1,0.01); +noiseGain = hslider("h:Physical_and_Nonlinearity/v:Physical_Parameters/Noise_Gain +[2][tooltip:Breath noise gain (value between 0 and 1)]",0,0,1,0.01); +pressure = hslider("h:Physical_and_Nonlinearity/v:Physical_Parameters/Pressure +[2][tooltip:Breath pressure (value bewteen 0 and 1)]",1,0,1,0.01); + +typeModulation = nentry("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Modulation_Type +[3][tooltip: 0=theta is modulated by the incoming signal; 1=theta is modulated by the averaged incoming signal; +2=theta is modulated by the squared incoming signal; 3=theta is modulated by a sine wave of frequency freqMod; +4=theta is modulated by a sine wave of frequency freq;]",0,0,4,1); +nonLinearity = hslider("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Nonlinearity +[3][tooltip:Nonlinearity factor (value between 0 and 1)]",0,0,1,0.01); +frequencyMod = hslider("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Modulation_Frequency +[3][unit:Hz][tooltip:Frequency of the sine wave for the modulation of theta (works if Modulation Type=3)]",220,20,1000,0.1); +nonLinAttack = hslider("h:Physical_and_Nonlinearity/v:Nonlinear_Filter_Parameters/Nonlinearity_Attack +[3][unit:s][Attack duration of the nonlinearity]",0.1,0,2,0.01); + +vibratoFreq = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Freq +[4][unit:Hz]",5,1,15,0.1); +vibratoGain = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Gain +[4][tooltip:A value between 0 and 1]",0.1,0,1,0.01); +vibratoAttack = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Attack +[4][unit:s][tooltip:Vibrato attack duration]",0.5,0,2,0.01); +vibratoRelease = hslider("h:Envelopes_and_Vibrato/v:Vibrato_Parameters/Vibrato_Release +[4][unit:s][tooltip:Vibrato release duration]",0.01,0,2,0.01); + +envelopeAttack = hslider("h:Envelopes_and_Vibrato/v:Envelope_Parameters/Envelope_Attack +[5][unit:s][tooltip:Envelope attack duration]",0.01,0,2,0.01); +envelopeDecay = hslider("h:Envelopes_and_Vibrato/v:Envelope_Parameters/Envelope_Decay +[5][unit:s][tooltip:Envelope decay duration]",0.05,0,2,0.01); +envelopeRelease = hslider("h:Envelopes_and_Vibrato/v:Envelope_Parameters/Envelope_Release +[5][unit:s][tooltip:Envelope release duration]",0.1,0,2,0.01); + +//==================== SIGNAL PROCESSING ====================== + +//----------------------- Nonlinear filter ---------------------------- +//nonlinearities are created by the nonlinear passive allpass ladder filter declared in filter.lib + +//nonlinear filter order +nlfOrder = 6; + +//attack - sustain - release envelope for nonlinearity (declared in instrument.lib) +envelopeMod = asr(nonLinAttack,100,envelopeRelease,gate); + +//nonLinearModultor is declared in instrument.lib, it adapts allpassnn from filter.lib +//for using it with waveguide instruments +NLFM = nonLinearModulator((nonLinearity : smooth(0.999)),envelopeMod,freq, + typeModulation,(frequencyMod : smooth(0.999)),nlfOrder); + +//----------------------- Synthesis parameters computing and functions declaration ---------------------------- + +//reed table parameters +reedTableOffset = 0.7; +reedTableSlope = -0.44 + (0.26*reedStiffness); + +//the reed function is declared in instrument.lib +reedTable = reed(reedTableOffset,reedTableSlope); + +//delay line with a length adapted in function of the order of nonlinear filter +delayLength = SR/freq*0.5 - 1.5 - (nlfOrder*nonLinearity)*(typeModulation < 2); +delayLine = fdelay(4096,delayLength); + +//one zero filter used as a allpass: pole is set to -1 +filter = oneZero0(0.5,0.5); + +//stereoizer is declared in instrument.lib and implement a stereo spacialisation in function of +//the frequency period in number of samples +stereo = stereoizer(SR/freq); + +//----------------------- Algorithm implementation ---------------------------- + +//Breath pressure + vibrato + breath noise + envelope (Attack / Decay / Sustain / Release) +envelope = adsr(envelopeAttack,envelopeDecay,100,envelopeRelease,gate)*pressure*0.9; + +vibrato = osc(vibratoFreq)*vibratoGain* + envVibrato(0.1*2*vibratoAttack,0.9*2*vibratoAttack,100,vibratoRelease,gate); +breath = envelope + envelope*noise*noiseGain; +breathPressure = breath + breath*vibrato; + +process = + //Commuted Loss Filtering + (_,(breathPressure <: _,_) : (filter*-0.95 - _ <: + + //Non-Linear Scattering + *(reedTable)) + _) ~ + + //Delay with Feedback + (delayLine : NLFM) : + + //scaling and stereo + *(gain)*1.5 : stereo : instrReverb;