70413e7cf18e56119f1d336bbef0a6aef177a806
7 x
, y
, z
= symbols('x y z')
9 # diam = Ge(y, x - 1) & Le(y, x + 1) & Ge(y, -x - 1) & Le(y, -x + 1)
10 # print('diamond:', diam)
11 # diam.plot(fill=True, edgecolor='red', facecolor='yellow')
15 cham
= Le(0, x
) & Le(x
, 3) & Le(0, y
) & Le(y
, 3) & Le(0, z
) & Le(z
, 3) & \
16 Le(z
- 2, x
) & Le(x
, z
+ 2) & Le(1 - z
, x
) & Le(x
, 5 - z
) & \
17 Le(z
- 2, y
) & Le(y
, z
+ 2) & Le(1 - z
, y
) & Le(y
, 5 - z
) & \
18 Le(y
- 2, x
) & Le(x
, y
+ 2) & Le(1 - y
, x
) & Le(x
, 5 - y
)
19 cham_plot
= cham
.plot(facecolors
=(1, 0, 0, 0.75))
24 Le(x
+ y
+ z
, 7) & Ge(-2, -x
- y
- z
) & \
25 Le(-1, x
+ y
- z
) & Le(x
+ y
- z
, 4) & \
26 Le(-1, x
- y
+ z
) & Le(x
- y
+ z
, 4) & \
27 Le(-1, -x
+ y
+ z
) & Le(-x
+ y
+ z
, 4)
28 rhom
.plot(facecolors
=(0, 1, 0, 0.75))
31 # Truncated cuboctahedron
32 cubo
= Le(0, x
) & Le(x
, 5) & Le(0, y
) & Le(y
, 5) & Le(0, z
) & Le(z
, 5) & \
33 Le(x
-4, y
) & Le(y
, x
+ 4) & Le(-x
+ 1, y
) & Le(y
, -x
+ 9) & \
34 Le(y
-4, z
) & Le(z
, y
+ 4) & Le(-y
+ 1, z
) & Le(z
, -y
+ 9) & \
35 Le(z
-4, x
) & Le(x
, z
+ 4) & Le(-z
+ 1, x
) & Le(x
, -z
+ 9) & \
36 Le(3, x
+ y
+ z
) & Le(x
+ y
+ z
, 12) & \
37 Le(-2, x
- y
+ z
) & Le(x
- y
+ z
, 7) & \
38 Le(-2, -x
+ y
+ z
) & Le(-x
+ y
+ z
, 7) & \
39 Le(-2, x
+ y
- z
) & Le(x
+ y
- z
, 7)
40 cubo_plot
= cubo
.plot(facecolors
=(0, 0, 1, 0.75))