9584609e6878e142fd66302f281fb7ae44c69462
4 import ctypes
, ctypes
.util
6 from . import isl
, islhelper
8 from fractions
import Fraction
, gcd
10 libisl
= ctypes
.CDLL(ctypes
.util
.find_library('isl'))
12 libisl
.isl_printer_get_str
.restype
= ctypes
.c_char_p
16 'constant', 'symbol', 'symbols',
17 'eq', 'le', 'lt', 'ge', 'gt',
33 def _polymorphic_method(func
):
34 @functools.wraps(func
)
36 if isinstance(b
, Expression
):
38 if isinstance(b
, numbers
.Rational
):
44 def _polymorphic_operator(func
):
45 # A polymorphic operator should call a polymorphic method, hence we just
46 # have to test the left operand.
47 @functools.wraps(func
)
49 if isinstance(a
, numbers
.Rational
):
52 elif isinstance(a
, Expression
):
54 raise TypeError('arguments must be linear expressions')
62 self
._ic
= libisl
.isl_ctx_alloc()
65 def _as_parameter_(self
):
68 #comment out so does not delete itself after being created
70 # libisl.isl_ctx_free(self)
72 def __eq__(self
, other
):
73 if not isinstance(other
, Context
):
75 return self
._ic
== other
._ic
82 This class implements linear expressions.
85 def __new__(cls
, coefficients
=None, constant
=0):
86 if isinstance(coefficients
, str):
88 raise TypeError('too many arguments')
89 return cls
.fromstring(coefficients
)
90 self
= super().__new
__(cls
)
91 self
._coefficients
= {}
92 if isinstance(coefficients
, dict):
93 coefficients
= coefficients
.items()
94 if coefficients
is not None:
95 for symbol
, coefficient
in coefficients
:
96 if isinstance(symbol
, Expression
) and symbol
.issymbol():
98 elif not isinstance(symbol
, str):
99 raise TypeError('symbols must be strings')
100 if not isinstance(coefficient
, numbers
.Rational
):
101 raise TypeError('coefficients must be rational numbers')
103 self
._coefficients
[symbol
] = coefficient
104 if not isinstance(constant
, numbers
.Rational
):
105 raise TypeError('constant must be a rational number')
106 self
._constant
= constant
111 yield from sorted(self
._coefficients
)
115 return len(list(self
.symbols()))
117 def coefficient(self
, symbol
):
118 if isinstance(symbol
, Expression
) and symbol
.issymbol():
120 elif not isinstance(symbol
, str):
121 raise TypeError('symbol must be a string')
123 return self
._coefficients
[symbol
]
127 __getitem__
= coefficient
130 def coefficients(self
):
131 for symbol
in self
.symbols():
132 yield symbol
, self
.coefficient(symbol
)
136 return self
._constant
138 def isconstant(self
):
139 return len(self
._coefficients
) == 0
142 for symbol
in self
.symbols():
143 yield self
.coefficient(symbol
)
146 def values_int(self
):
147 for symbol
in self
.symbols():
148 return self
.coefficient(symbol
)
149 return int(self
.constant
)
153 if not self
.issymbol():
154 raise ValueError('not a symbol: {}'.format(self
))
155 for symbol
in self
.symbols():
159 return len(self
._coefficients
) == 1 and self
._constant
== 0
162 return (not self
.isconstant()) or bool(self
.constant
)
171 def __add__(self
, other
):
172 coefficients
= dict(self
.coefficients
)
173 for symbol
, coefficient
in other
.coefficients
:
174 if symbol
in coefficients
:
175 coefficients
[symbol
] += coefficient
177 coefficients
[symbol
] = coefficient
178 constant
= self
.constant
+ other
.constant
179 return Expression(coefficients
, constant
)
184 def __sub__(self
, other
):
185 coefficients
= dict(self
.coefficients
)
186 for symbol
, coefficient
in other
.coefficients
:
187 if symbol
in coefficients
:
188 coefficients
[symbol
] -= coefficient
190 coefficients
[symbol
] = -coefficient
191 constant
= self
.constant
- other
.constant
192 return Expression(coefficients
, constant
)
194 def __rsub__(self
, other
):
195 return -(self
- other
)
198 def __mul__(self
, other
):
199 if other
.isconstant():
200 coefficients
= dict(self
.coefficients
)
201 for symbol
in coefficients
:
202 coefficients
[symbol
] *= other
.constant
203 constant
= self
.constant
* other
.constant
204 return Expression(coefficients
, constant
)
205 if isinstance(other
, Expression
) and not self
.isconstant():
206 raise ValueError('non-linear expression: '
207 '{} * {}'.format(self
._parenstr
(), other
._parenstr
()))
208 return NotImplemented
213 def __truediv__(self
, other
):
214 if other
.isconstant():
215 coefficients
= dict(self
.coefficients())
216 for symbol
in coefficients
:
217 coefficients
[symbol
] = \
218 Fraction(coefficients
[symbol
], other
.constant
)
219 constant
= Fraction(self
.constant
, other
.constant
)
220 return Expression(coefficients
, constant
)
221 if isinstance(other
, Expression
):
222 raise ValueError('non-linear expression: '
223 '{} / {}'.format(self
._parenstr
(), other
._parenstr
()))
224 return NotImplemented
226 def __rtruediv__(self
, other
):
227 if isinstance(other
, self
):
228 if self
.isconstant():
229 constant
= Fraction(other
, self
.constant
)
230 return Expression(constant
=constant
)
232 raise ValueError('non-linear expression: '
233 '{} / {}'.format(other
._parenstr
(), self
._parenstr
()))
234 return NotImplemented
238 symbols
= sorted(self
.symbols())
240 for symbol
in symbols
:
241 coefficient
= self
[symbol
]
246 string
+= ' + {}'.format(symbol
)
247 elif coefficient
== -1:
249 string
+= '-{}'.format(symbol
)
251 string
+= ' - {}'.format(symbol
)
254 string
+= '{}*{}'.format(coefficient
, symbol
)
255 elif coefficient
> 0:
256 string
+= ' + {}*{}'.format(coefficient
, symbol
)
258 assert coefficient
< 0
260 string
+= ' - {}*{}'.format(coefficient
, symbol
)
262 constant
= self
.constant
263 if constant
!= 0 and i
== 0:
264 string
+= '{}'.format(constant
)
266 string
+= ' + {}'.format(constant
)
269 string
+= ' - {}'.format(constant
)
274 def _parenstr(self
, always
=False):
276 if not always
and (self
.isconstant() or self
.issymbol()):
279 return '({})'.format(string
)
282 string
= '{}({{'.format(self
.__class
__.__name
__)
283 for i
, (symbol
, coefficient
) in enumerate(self
.coefficients
):
286 string
+= '{!r}: {!r}'.format(symbol
, coefficient
)
287 string
+= '}}, {!r})'.format(self
.constant
)
291 def fromstring(cls
, string
):
292 raise NotImplementedError
295 def __eq__(self
, other
):
297 # see http://docs.sympy.org/dev/tutorial/gotchas.html#equals-signs
298 return isinstance(other
, Expression
) and \
299 self
._coefficients
== other
._coefficients
and \
300 self
.constant
== other
.constant
303 return hash((self
._coefficients
, self
._constant
))
306 lcm
= functools
.reduce(lambda a
, b
: a
*b
// gcd(a
, b
),
307 [value
.denominator
for value
in self
.values()])
311 def _eq(self
, other
):
312 return Polyhedron(equalities
=[(self
- other
)._canonify
()])
315 def __le__(self
, other
):
316 return Polyhedron(inequalities
=[(other
- self
)._canonify
()])
319 def __lt__(self
, other
):
320 return Polyhedron(inequalities
=[(other
- self
)._canonify
() - 1])
323 def __ge__(self
, other
):
324 return Polyhedron(inequalities
=[(self
- other
)._canonify
()])
327 def __gt__(self
, other
):
328 return Polyhedron(inequalities
=[(self
- other
)._canonify
() - 1])
331 def constant(numerator
=0, denominator
=None):
332 if denominator
is None and isinstance(numerator
, numbers
.Rational
):
333 return Expression(constant
=numerator
)
335 return Expression(constant
=Fraction(numerator
, denominator
))
338 if not isinstance(name
, str):
339 raise TypeError('name must be a string')
340 return Expression(coefficients
={name
: 1})
343 if isinstance(names
, str):
344 names
= names
.replace(',', ' ').split()
345 return (symbol(name
) for name
in names
)
348 @_polymorphic_operator
352 @_polymorphic_operator
356 @_polymorphic_operator
360 @_polymorphic_operator
364 @_polymorphic_operator
371 This class implements polyhedrons.
374 def __new__(cls
, equalities
=None, inequalities
=None):
375 if isinstance(equalities
, str):
376 if inequalities
is not None:
377 raise TypeError('too many arguments')
378 return cls
.fromstring(equalities
)
379 self
= super().__new
__(cls
)
380 self
._equalities
= []
381 if equalities
is not None:
382 for constraint
in equalities
:
383 for value
in constraint
.values():
384 if value
.denominator
!= 1:
385 raise TypeError('non-integer constraint: '
386 '{} == 0'.format(constraint
))
387 self
._equalities
.append(constraint
)
388 self
._inequalities
= []
389 if inequalities
is not None:
390 for constraint
in inequalities
:
391 for value
in constraint
.values():
392 if value
.denominator
!= 1:
393 raise TypeError('non-integer constraint: '
394 '{} <= 0'.format(constraint
))
395 self
._inequalities
.append(constraint
)
396 self
._bset
= self
.to_isl()
398 #put this here just to test from isl method
399 #from_isl = self.from_isl(self._bset)
406 def equalities(self
):
407 yield from self
._equalities
410 def inequalities(self
):
411 yield from self
._inequalities
415 return self
._constant
417 def isconstant(self
):
418 return len(self
._coefficients
) == 0
422 return bool(libisl
.isl_basic_set_is_empty(self
._bset
))
424 def constraints(self
):
425 yield from self
.equalities
426 yield from self
.inequalities
431 for constraint
in self
.constraints():
432 s
.update(constraint
.symbols())
437 return len(self
.symbols())
440 # return false if the polyhedron is empty, true otherwise
441 if self
._equalities
or self
._inequalities
:
447 def __contains__(self
, value
):
448 # is the value in the polyhedron?
449 raise NotImplementedError
451 def __eq__(self
, other
):
452 raise NotImplementedError
457 def isuniverse(self
):
458 return self
== universe
460 def isdisjoint(self
, other
):
461 # return true if the polyhedron has no elements in common with other
462 raise NotImplementedError
464 def issubset(self
, other
):
465 raise NotImplementedError
467 def __le__(self
, other
):
468 return self
.issubset(other
)
470 def __lt__(self
, other
):
471 raise NotImplementedError
473 def issuperset(self
, other
):
474 # test whether every element in other is in the polyhedron
476 if value
== self
.constraints():
480 raise NotImplementedError
482 def __ge__(self
, other
):
483 return self
.issuperset(other
)
485 def __gt__(self
, other
):
486 raise NotImplementedError
488 def union(self
, *others
):
489 # return a new polyhedron with elements from the polyhedron and all
490 # others (convex union)
491 raise NotImplementedError
493 def __or__(self
, other
):
494 return self
.union(other
)
496 def intersection(self
, *others
):
497 # return a new polyhedron with elements common to the polyhedron and all
499 # a poor man's implementation could be:
500 # equalities = list(self.equalities)
501 # inequalities = list(self.inequalities)
502 # for other in others:
503 # equalities.extend(other.equalities)
504 # inequalities.extend(other.inequalities)
505 # return self.__class__(equalities, inequalities)
506 raise NotImplementedError
508 def __and__(self
, other
):
509 return self
.intersection(other
)
511 def difference(self
, *others
):
512 # return a new polyhedron with elements in the polyhedron that are not
514 raise NotImplementedError
516 def __sub__(self
, other
):
517 return self
.difference(other
)
521 for constraint
in self
.equalities
:
522 constraints
.append('{} == 0'.format(constraint
))
523 for constraint
in self
.inequalities
:
524 constraints
.append('{} >= 0'.format(constraint
))
525 return '{{{}}}'.format(', '.join(constraints
))
528 equalities
= list(self
.equalities
)
529 inequalities
= list(self
.inequalities
)
530 return '{}(equalities={!r}, inequalities={!r})' \
531 ''.format(self
.__class
__.__name
__, equalities
, inequalities
)
534 def fromstring(cls
, string
):
535 raise NotImplementedError
537 def _symbolunion(self
, *others
):
539 symbols
= set(self
.symbols())
541 symbols
.update(other
.symbols())
542 return sorted(symbols
)
544 def to_isl(self
, symbols
=None):
546 symbols
= self
.symbols()
549 print('eq:', list(self
.equalities
))
550 print('ineq:', list(self
.inequalities
))
551 num_coefficients
= len(symbols
)
553 space
= libisl
.isl_space_set_alloc(ctx
, 0, num_coefficients
)
554 bset
= libisl
.isl_basic_set_universe(libisl
.isl_space_copy(space
))
555 ls
= libisl
.isl_local_space_from_space(space
)
556 ceq
= libisl
.isl_equality_alloc(libisl
.isl_local_space_copy(ls
))
557 cin
= libisl
.isl_inequality_alloc(libisl
.isl_local_space_copy(ls
))
558 '''if there are equalities/inequalities, take each constant and coefficient and add as a constraint to the basic set'''
559 if list(self
.equalities
): #check if any equalities exist
560 for eq
in self
.equalities
:
561 coeff_eq
= dict(eq
.coefficients
)
564 ceq
= libisl
.isl_constraint_set_constant_si(ceq
, value
)
566 num
= coeff_eq
.get(eq
)
567 iden
= symbols
.index(eq
)
568 print('id of var {} is {}, coeff is {}'.format(eq
, iden
, num
))
569 ceq
= libisl
.isl_constraint_set_coefficient_si(ceq
, islhelper
.isl_dim_set
, iden
, num
) #use 3 for type isl_dim_set
570 bset
= libisl
.isl_basic_set_add_constraint(bset
, ceq
)
571 if list(self
.inequalities
): #check if any inequalities exist
572 for ineq
in self
.inequalities
:
573 coeff_in
= dict(ineq
.coefficients
)
575 value
= ineq
.constant
576 cin
= libisl
.isl_constraint_set_constant_si(cin
, value
)
577 for ineq
in coeff_in
:
578 num
= coeff_in
.get(ineq
)
579 iden
= symbols
.index(ineq
)
580 print('id of var {} is {}, coeff is {}'.format(ineq
, iden
, num
))
581 cin
= libisl
.isl_constraint_set_coefficient_si(cin
, islhelper
.isl_dim_set
, iden
, num
) #use 3 for type isl_dim_set
582 bset
= libisl
.isl_basic_set_add_constraint(bset
, cin
)
583 ip
= libisl
.isl_printer_to_str(ctx
) #create string printer
584 ip
= libisl
.isl_printer_print_basic_set(ip
, bset
) #print basic set to printer
585 string
= libisl
.isl_printer_get_str(ip
) #get string from printer
586 string
= str(string
.decode())
591 def from_isl(self
, bset
):
592 '''takes basic set in isl form and puts back into python version of polyhedron
593 isl example code gives isl form as:
594 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}")
595 our printer is giving form as:
596 b'{ [i0] : 1 = 0 }' '''
599 constraints
= libisl
.isl_basic_set_equalities_matrix(bset
, 3)
600 elif self
._inequalities
:
601 constraints
= libisl
.isl_basic_set_inequalities_matrix(bset
, 3)
609 if __name__
== '__main__':
610 ex1
= Expression(coefficients
={'a': 1, 'x': 2}, constant
=2)
611 ex2
= Expression(coefficients
={'a': 3 , 'b': 2}, constant
=3)
612 p
= Polyhedron(inequalities
=[ex1
, ex2
])
613 #p = eq(ex2, 0)# 2a+4 = 0, in fact 6a+3 = 0
616 #universe = Polyhedron()