fdf1cc7b363fddbf650b92fdcd973bad03a038dc
[linpy.git] / examples / diamonds.py
1 #!/usr/bin/env python3
2 #
3 # Copyright 2014 MINES ParisTech
4 #
5 # This file is part of LinPy.
6 #
7 # LinPy is free software: you can redistribute it and/or modify
8 # it under the terms of the GNU General Public License as published by
9 # the Free Software Foundation, either version 3 of the License, or
10 # (at your option) any later version.
11 #
12 # LinPy is distributed in the hope that it will be useful,
13 # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 # GNU General Public License for more details.
16 #
17 # You should have received a copy of the GNU General Public License
18 # along with LinPy. If not, see <http://www.gnu.org/licenses/>.
19
20 import matplotlib.pyplot as plt
21
22 from matplotlib import pylab
23 from mpl_toolkits.mplot3d import Axes3D
24
25 from linpy import *
26
27 x, y, z = symbols('x y z')
28
29 fig = plt.figure(facecolor='white')
30
31 diam_plot = fig.add_subplot(2, 2, 1, aspect='equal')
32 diam_plot.set_title('Diamond')
33 diam = Ge(y, x - 1) & Le(y, x + 1) & Ge(y, -x - 1) & Le(y, -x + 1)
34 diam.plot(diam_plot, fill=True, edgecolor='red', facecolor='yellow')
35
36 cham_plot = fig.add_subplot(2, 2, 2, projection='3d', aspect='equal')
37 cham_plot.set_title('Chamfered cube')
38 cham = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3) & Le(0, z) & Le(z, 3) & \
39 Le(z - 2, x) & Le(x, z + 2) & Le(1 - z, x) & Le(x, 5 - z) & \
40 Le(z - 2, y) & Le(y, z + 2) & Le(1 - z, y) & Le(y, 5 - z) & \
41 Le(y - 2, x) & Le(x, y + 2) & Le(1 - y, x) & Le(x, 5 - y)
42 cham.plot(cham_plot, facecolors=(1, 0, 0, 0.75))
43
44 rhom_plot = fig.add_subplot(2, 2, 3, projection='3d', aspect='equal')
45 rhom_plot.set_title('Rhombicuboctahedron')
46 rhom = cham & \
47 Le(x + y + z, 7) & Ge(-2, -x - y - z) & \
48 Le(-1, x + y - z) & Le(x + y - z, 4) & \
49 Le(-1, x - y + z) & Le(x - y + z, 4) & \
50 Le(-1, -x + y + z) & Le(-x + y + z, 4)
51 rhom.plot(rhom_plot, facecolors=(0, 1, 0, 0.75))
52
53 cubo_plot = fig.add_subplot(2, 2, 4, projection='3d', aspect='equal')
54 cubo_plot.set_title('Truncated cuboctahedron')
55 cubo = Le(0, x) & Le(x, 5) & Le(0, y) & Le(y, 5) & Le(0, z) & Le(z, 5) & \
56 Le(x -4, y) & Le(y, x + 4) & Le(-x + 1, y) & Le(y, -x + 9) & \
57 Le(y -4, z) & Le(z, y + 4) & Le(-y + 1, z) & Le(z, -y + 9) & \
58 Le(z -4, x) & Le(x, z + 4) & Le(-z + 1, x) & Le(x, -z + 9) & \
59 Le(3, x + y + z) & Le(x + y + z, 12) & \
60 Le(-2, x - y + z) & Le(x - y + z, 7) & \
61 Le(-2, -x + y + z) & Le(-x + y + z, 7) & \
62 Le(-2, x + y - z) & Le(x + y - z, 7)
63 cubo.plot(cubo_plot, facecolors=(0, 0, 1, 0.75))
64
65 pylab.show()