X-Git-Url: https://scm.cri.ensmp.fr/git/linpy.git/blobdiff_plain/197818714e75c2353ed8b7c9fec653f1212f13ae..ce8dda550018a59520e2d632f10d3fe5650e9d0d:/examples/nsad2010.py diff --git a/examples/nsad2010.py b/examples/nsad2010.py index 91a85b4..3de2ebd 100755 --- a/examples/nsad2010.py +++ b/examples/nsad2010.py @@ -1,23 +1,14 @@ #!/usr/bin/env python3 + +# This is an implementation of the algorithm described in # -# Copyright 2014 MINES ParisTech -# -# This file is part of LinPy. -# -# LinPy is free software: you can redistribute it and/or modify -# it under the terms of the GNU General Public License as published by -# the Free Software Foundation, either version 3 of the License, or -# (at your option) any later version. -# -# LinPy is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. +# [ACI10] C. Ancourt, F. Coelho and F. Irigoin, A modular static analysis +# approach to affine loop invariants detection (2010), pp. 3 - 16, NSAD 2010. # -# You should have received a copy of the GNU General Public License -# along with LinPy. If not, see . +# to compute the transitive closure of an affine transformer. A refined version +# of this algorithm is implemented in PIPS. -from linpy import * +from linpy import Dummy, Eq, Ge, Polyhedron, symbols class Transformer: @@ -37,7 +28,8 @@ class Transformer: delta_symbols = [symbol.asdummy() for symbol in self.range_symbols] k = Dummy('k') polyhedron = self.polyhedron - for x, xprime, dx in zip(self.range_symbols, self.domain_symbols, delta_symbols): + for x, xprime, dx in zip( + self.range_symbols, self.domain_symbols, delta_symbols): polyhedron &= Eq(dx, xprime - x) polyhedron = polyhedron.project(self.symbols) equalities, inequalities = [], [] @@ -49,15 +41,16 @@ class Transformer: inequalities.append(inequality) polyhedron = Polyhedron(equalities, inequalities) & Ge(k, 0) polyhedron = polyhedron.project([k]) - for x, xprime, dx in zip(self.range_symbols, self.domain_symbols, delta_symbols): + for x, xprime, dx in zip( + self.range_symbols, self.domain_symbols, delta_symbols): polyhedron &= Eq(dx, xprime - x) polyhedron = polyhedron.project(delta_symbols) return Transformer(polyhedron, self.range_symbols, self.domain_symbols) if __name__ == '__main__': - i, iprime, j, jprime = symbols("i i' j j'") - transformer = Transformer(Eq(iprime, i + 2) & Eq(jprime, j + 1), - [i, j], [iprime, jprime]) + i0, i, j0, j = symbols('i0 i j0 j') + transformer = Transformer(Eq(i, i0 + 2) & Eq(j, j0 + 1), + [i0, j0], [i, j]) print('T =', transformer.polyhedron) print('T* =', transformer.star().polyhedron)