X-Git-Url: https://scm.cri.ensmp.fr/git/linpy.git/blobdiff_plain/1d494bb187b70135df721c13306d7f26fdf33f50..51e97eade63b2f4c7b500feb503436cc4a886e59:/pypol/tests/test_domains.py?ds=sidebyside diff --git a/pypol/tests/test_domains.py b/pypol/tests/test_domains.py index f9e7008..529025e 100644 --- a/pypol/tests/test_domains.py +++ b/pypol/tests/test_domains.py @@ -1,12 +1,182 @@ +""" + This file is part of Linpy. + + Linpy is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + Linpy is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with Linpy. If not, see . +""" + import unittest from ..domains import * +from ..linexprs import Symbol, symbols +from ..polyhedra import * class TestDomain(unittest.TestCase): def setUp(self): - pass + x, y = symbols('x y') + self.square1 = Polyhedron(inequalities=[x, 2 - x, y, 2 - y]) + self.square2 = Polyhedron(inequalities=[x - 1, 3 - x , y - 1, 3 - y]) #correct representation + self.square3 = Polyhedron(inequalities=[x, 3 - x, y, 3 - y]) + self.square4 = Polyhedron(inequalities=[x - 1, 2 - x, y - 1, 2 - y]) + self.square5 = Polyhedron(inequalities=[x - 3, 6 - x, y - 3, 6 -y]) + self.square6 = Polyhedron(equalities=[3 - y], inequalities=[x - 1, 3 - x, y - 1]) + self.unbound_poly = Polyhedron(inequalities=[x, 3 - x, y]) + self.universe = Polyhedron([]) + self.empty = Empty + self.disjoint = And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)) + self.complement = Or(Ge(-x - 1, 0), Ge(x - 3, 0), And(Ge(x, 0), Ge(-x + 2, 0), Ge(-y - 1, 0)), And(Ge(x, 0), Ge(-x + 2, 0), Ge(y - 3, 0))) + self.hull = And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)) + self.dropped = And(Ge(y, 0), Ge(-y + 2, 0)) + self.intersection = And(Ge(x - 1, 0), Ge(-x + 2, 0), Ge(y - 1, 0), Ge(-y + 2, 0)) + self.union = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0))) + self.sum1 = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0))) + self.sum2 =And(Ge(x, 0), Ge(y, 0), Ge(-y + 3, 0), Ge(-x + 3, 0), Ge(x - y + 2, 0), Ge(-x + y + 2, 0)) + self.difference1 = Or(And(Eq(x - 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)), And(Eq(y - 3, 0), Ge(x - 1, 0), Ge(-x + 2, 0))) + self.difference2 = And(Ge(x + y - 4, 0), Ge(-x + 3, 0), Ge(-y + 3, 0)) + self.lexmin = And(Eq(y, 0), Eq(x, 0)) + self.lexmax = And(Eq(y - 2, 0), Eq(x - 2, 0)) def test_new(self): - pass + with self.assertRaises(TypeError): + Polyhedron(1) + + def test_disjoint(self): + self.assertEqual(self.square1.disjoint(), self.disjoint) + self.assertEqual(self.empty.disjoint(), Empty) + self.assertEqual(self.universe.disjoint(), self.universe) + + def test_isempty(self): + self.assertFalse(self.square1.isempty()) + self.assertTrue(self.empty.isempty()) + self.assertFalse(self.universe.isempty()) + + def test_isuniverse(self): + self.assertFalse(self.square1.isuniverse()) + self.assertTrue(self.universe.isuniverse()) + + def test_isbounded(self): + self.assertTrue(self.square1.isbounded()) + self.assertFalse(self.unbound_poly.isbounded()) + + def test_eq(self): + self.assertTrue(self.square1 == self.square1) + self.assertFalse(self.square1 == self.square2) + self.assertFalse(self.empty == self.universe) + + def test_isdisjoint(self): + self.assertFalse(self.square1.isdisjoint(self.square2)) + self.assertFalse(self.universe.isdisjoint(self.square1)) + self.assertTrue(self.square1.isdisjoint(self.square5)) + self.assertTrue(self.empty.isdisjoint(self.square1)) + + def test_issubset(self): + self.assertTrue(self.square4.issubset(self.unbound_poly)) + self.assertFalse(self.square1.issubset(self.square2)) + self.assertTrue(self.square1.issubset(self.universe)) + self.assertTrue(self.empty.issubset(self.square1)) + + def test_le(self): + self.assertTrue(self.square4 <= self.square3) + self.assertFalse(self.square3 <= self.square4) + self.assertTrue(self.empty <= self.square1) + self.assertTrue(self.square1 <= self.universe) + + def test_lt(self): + self.assertTrue(self.square4 < self.square3) + self.assertFalse(self.square3 < self.square4) + self.assertTrue(self.empty < self.square1) + self.assertTrue(self.square1 < self.universe) + + def test_complement(self): + self.assertEqual(~self.square1, self.complement) + self.assertEqual(~self.universe, Empty) + self.assertEqual(~self.empty, self.universe) + + def test_aspolyhedron(self): + self.assertEqual(self.square1.aspolyhedron(), self.hull) + self.assertEqual(self.universe.aspolyhedron(), self.universe) + self.assertEqual(self.empty.aspolyhedron(), self.empty) + + def test_project(self): + self.assertEqual(self.square1.project(symbols('x')), self.dropped) + self.assertEqual(self.square1.project(symbols('x y')), self.universe) + self.assertEqual(self.universe.project([]), self.universe) + self.assertEqual(self.empty.project([]), Empty) + + def test_simplify(self): + self.assertEqual(self.universe.simplify(), self.universe) + self.assertEqual(self.empty.simplify(), Empty) + + def test_sample(self): + self.assertEqual(self.square6.sample(), {Symbol('x'): 1, Symbol('y'): 3}) + with self.assertRaises(ValueError): + self.empty.sample() + self.assertEqual(self.universe.sample(), {}) + + def test_intersection(self): + self.assertEqual(self.square1.intersection(self.square2), self.intersection) + + def test_and(self): + self.assertEqual(self.square2 & self.square1, self.intersection) + self.assertEqual(self.square1 & self.universe, self.square1) + self.assertEqual(self.empty & self.square1, Empty) + self.assertEqual(self.universe & self.universe, self.universe) + self.assertEqual(self.universe & self.empty, Empty) + self.assertEqual(self.empty & self.empty, Empty) + + def test_union(self): + self.assertEqual(self.square1.union(self.square2), self.union) + self.assertEqual(self.square1.union(self.empty), self.square1) + self.assertEqual(self.square1.union(self.universe), self.universe) + self.assertEqual(self.universe.union(self.universe), self.universe) + self.assertEqual(self.empty.union(self.empty), self.empty) + + def test_or(self): + self.assertEqual(self.square1 | self.square2, self.union) + + def test_add(self): + self.assertEqual(self.square2 + self.square1, self.sum1) + self.assertEqual(Polyhedron(self.square1 + self.square2), self.sum2) + self.assertEqual(self.universe + self.square1, self.universe) + self.assertEqual(self.empty + self.square1, self.square1) + self.assertEqual(self.universe + self.universe, self.universe) + + def test_difference(self): + self.assertEqual(self.square2 - self.square1, self.difference1) + self.assertEqual(Polyhedron(self.square2 - self.square1), self.difference2) + self.assertEqual(self.square2 - self.square2, Empty) + self.assertEqual(self.universe - self.universe, Empty) + + def test_lexmin(self): + self.assertEqual(self.square1.lexmin(), self.lexmin) + self.assertEqual(self.universe.lexmin(), self.universe) + self.assertEqual(self.empty.lexmin(), Empty) + + def test_lexmax(self): + self.assertEqual(self.square1.lexmax(), self.lexmax) + self.assertEqual(self.universe.lexmax(), self.universe) + self.assertEqual(self.empty.lexmax(), Empty) + + def test_num_parameters(self): + self.assertEqual(self.square1.num_parameters(), 2) + self.assertEqual(self.empty.num_parameters(), 0) + self.assertEqual(self.universe.num_parameters(), 0) + + def test_involves_dims(self): + self.assertTrue(self.square1.involves_dims(symbols('x y'))) + self.assertFalse(self.empty.involves_dims(symbols('x'))) + self.assertFalse(self.universe.involves_dims(symbols('x'))) + +# Copyright 2014 MINES ParisTech