X-Git-Url: https://scm.cri.ensmp.fr/git/linpy.git/blobdiff_plain/5b661514c1bbabd8205fdbd22a0ba0f6b1ac6305..7b93cea1daf2889e9ee10ca9c22a1b5124404937:/pypol/domains.py diff --git a/pypol/domains.py b/pypol/domains.py deleted file mode 100644 index 10d12c5..0000000 --- a/pypol/domains.py +++ /dev/null @@ -1,485 +0,0 @@ -import ast -import functools -import re - -from fractions import Fraction - -from . import islhelper -from .islhelper import mainctx, libisl -from .geometry import GeometricObject, Point -from .linexprs import Expression, Symbol - - -__all__ = [ - 'Domain', - 'And', 'Or', 'Not', -] - - -@functools.total_ordering -class Domain(GeometricObject): - - __slots__ = ( - '_polyhedra', - '_symbols', - '_dimension', - ) - - def __new__(cls, *polyhedra): - from .polyhedra import Polyhedron - if len(polyhedra) == 1: - argument = polyhedra[0] - if isinstance(argument, str): - return cls.fromstring(argument) - elif isinstance(argument, GeometricObject): - return argument.aspolyhedron() - else: - raise TypeError('argument must be a string ' - 'or a GeometricObject instance') - else: - for polyhedron in polyhedra: - if not isinstance(polyhedron, Polyhedron): - raise TypeError('arguments must be Polyhedron instances') - symbols = cls._xsymbols(polyhedra) - islset = cls._toislset(polyhedra, symbols) - return cls._fromislset(islset, symbols) - - @classmethod - def _xsymbols(cls, iterator): - """ - Return the ordered tuple of symbols present in iterator. - """ - symbols = set() - for item in iterator: - symbols.update(item.symbols) - return tuple(sorted(symbols, key=Symbol.sortkey)) - - @property - def polyhedra(self): - return self._polyhedra - - @property - def symbols(self): - return self._symbols - - @property - def dimension(self): - return self._dimension - - def disjoint(self): - islset = self._toislset(self.polyhedra, self.symbols) - islset = libisl.isl_set_make_disjoint(mainctx, islset) - return self._fromislset(islset, self.symbols) - - def isempty(self): - islset = self._toislset(self.polyhedra, self.symbols) - empty = bool(libisl.isl_set_is_empty(islset)) - libisl.isl_set_free(islset) - return empty - - def __bool__(self): - return not self.isempty() - - def isuniverse(self): - islset = self._toislset(self.polyhedra, self.symbols) - universe = bool(libisl.isl_set_plain_is_universe(islset)) - libisl.isl_set_free(islset) - return universe - - def isbounded(self): - islset = self._toislset(self.polyhedra, self.symbols) - bounded = bool(libisl.isl_set_is_bounded(islset)) - libisl.isl_set_free(islset) - return bounded - - def __eq__(self, other): - symbols = self._xsymbols([self, other]) - islset1 = self._toislset(self.polyhedra, symbols) - islset2 = other._toislset(other.polyhedra, symbols) - equal = bool(libisl.isl_set_is_equal(islset1, islset2)) - libisl.isl_set_free(islset1) - libisl.isl_set_free(islset2) - return equal - - def isdisjoint(self, other): - symbols = self._xsymbols([self, other]) - islset1 = self._toislset(self.polyhedra, symbols) - islset2 = self._toislset(other.polyhedra, symbols) - equal = bool(libisl.isl_set_is_disjoint(islset1, islset2)) - libisl.isl_set_free(islset1) - libisl.isl_set_free(islset2) - return equal - - def issubset(self, other): - symbols = self._xsymbols([self, other]) - islset1 = self._toislset(self.polyhedra, symbols) - islset2 = self._toislset(other.polyhedra, symbols) - equal = bool(libisl.isl_set_is_subset(islset1, islset2)) - libisl.isl_set_free(islset1) - libisl.isl_set_free(islset2) - return equal - - def __le__(self, other): - return self.issubset(other) - - def __lt__(self, other): - symbols = self._xsymbols([self, other]) - islset1 = self._toislset(self.polyhedra, symbols) - islset2 = self._toislset(other.polyhedra, symbols) - equal = bool(libisl.isl_set_is_strict_subset(islset1, islset2)) - libisl.isl_set_free(islset1) - libisl.isl_set_free(islset2) - return equal - - def complement(self): - islset = self._toislset(self.polyhedra, self.symbols) - islset = libisl.isl_set_complement(islset) - return self._fromislset(islset, self.symbols) - - def __invert__(self): - return self.complement() - - def simplify(self): - #does not change anything in any of the examples - #isl seems to do this naturally - islset = self._toislset(self.polyhedra, self.symbols) - islset = libisl.isl_set_remove_redundancies(islset) - return self._fromislset(islset, self.symbols) - - def aspolyhedron(self): - # several types of hull are available - # polyhedral seems to be the more appropriate, to be checked - from .polyhedra import Polyhedron - islset = self._toislset(self.polyhedra, self.symbols) - islbset = libisl.isl_set_polyhedral_hull(islset) - return Polyhedron._fromislbasicset(islbset, self.symbols) - - def asdomain(self): - return self - - def project(self, dims): - # use to remove certain variables - islset = self._toislset(self.polyhedra, self.symbols) - n = 0 - for index, symbol in reversed(list(enumerate(self.symbols))): - if symbol in dims: - n += 1 - elif n > 0: - islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, index + 1, n) - n = 0 - if n > 0: - islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, 0, n) - dims = [symbol for symbol in self.symbols if symbol not in dims] - return Domain._fromislset(islset, dims) - - def sample(self): - islset = self._toislset(self.polyhedra, self.symbols) - islpoint = libisl.isl_set_sample_point(islset) - if bool(libisl.isl_point_is_void(islpoint)): - libisl.isl_point_free(islpoint) - raise ValueError('domain must be non-empty') - point = {} - for index, symbol in enumerate(self.symbols): - coordinate = libisl.isl_point_get_coordinate_val(islpoint, - libisl.isl_dim_set, index) - coordinate = islhelper.isl_val_to_int(coordinate) - point[symbol] = coordinate - libisl.isl_point_free(islpoint) - return point - - def intersection(self, *others): - if len(others) == 0: - return self - symbols = self._xsymbols((self,) + others) - islset1 = self._toislset(self.polyhedra, symbols) - for other in others: - islset2 = other._toislset(other.polyhedra, symbols) - islset1 = libisl.isl_set_intersect(islset1, islset2) - return self._fromislset(islset1, symbols) - - def __and__(self, other): - return self.intersection(other) - - def union(self, *others): - if len(others) == 0: - return self - symbols = self._xsymbols((self,) + others) - islset1 = self._toislset(self.polyhedra, symbols) - for other in others: - islset2 = other._toislset(other.polyhedra, symbols) - islset1 = libisl.isl_set_union(islset1, islset2) - return self._fromislset(islset1, symbols) - - def __or__(self, other): - return self.union(other) - - def __add__(self, other): - return self.union(other) - - def difference(self, other): - symbols = self._xsymbols([self, other]) - islset1 = self._toislset(self.polyhedra, symbols) - islset2 = other._toislset(other.polyhedra, symbols) - islset = libisl.isl_set_subtract(islset1, islset2) - return self._fromislset(islset, symbols) - - def __sub__(self, other): - return self.difference(other) - - def lexmin(self): - islset = self._toislset(self.polyhedra, self.symbols) - islset = libisl.isl_set_lexmin(islset) - return self._fromislset(islset, self.symbols) - - def lexmax(self): - islset = self._toislset(self.polyhedra, self.symbols) - islset = libisl.isl_set_lexmax(islset) - return self._fromislset(islset, self.symbols) - - def num_parameters(self): - #could be useful with large, complicated polyhedrons - islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols) - num = libisl.isl_basic_set_dim(islbset, libisl.isl_dim_set) - return num - - def involves_dims(self, dims): - #could be useful with large, complicated polyhedrons - islset = self._toislset(self.polyhedra, self.symbols) - dims = sorted(dims) - symbols = sorted(list(self.symbols)) - n = 0 - if len(dims)>0: - for dim in dims: - if dim in symbols: - first = symbols.index(dims[0]) - n +=1 - else: - first = 0 - else: - return False - value = bool(libisl.isl_set_involves_dims(islset, libisl.isl_dim_set, first, n)) - libisl.isl_set_free(islset) - return value - - _RE_COORDINATE = re.compile(r'\((?P\-?\d+)\)(/(?P\d+))?') - - def vertices(self): - #returning list of verticies - from .polyhedra import Polyhedron - islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols) - vertices = libisl.isl_basic_set_compute_vertices(islbset); - vertices = islhelper.isl_vertices_vertices(vertices) - points = [] - for vertex in vertices: - expr = libisl.isl_vertex_get_expr(vertex) - coordinates = [] - if islhelper.isl_version < '0.13': - constraints = islhelper.isl_basic_set_constraints(expr) - for constraint in constraints: - constant = libisl.isl_constraint_get_constant_val(constraint) - constant = islhelper.isl_val_to_int(constant) - for index, symbol in enumerate(self.symbols): - coefficient = libisl.isl_constraint_get_coefficient_val(constraint, - libisl.isl_dim_set, index) - coefficient = islhelper.isl_val_to_int(coefficient) - if coefficient != 0: - coordinate = -Fraction(constant, coefficient) - coordinates.append((symbol, coordinate)) - else: - # horrible hack, find a cleaner solution - string = islhelper.isl_multi_aff_to_str(expr) - matches = self._RE_COORDINATE.finditer(string) - for symbol, match in zip(self.symbols, matches): - numerator = int(match.group('num')) - denominator = match.group('den') - denominator = 1 if denominator is None else int(denominator) - coordinate = Fraction(numerator, denominator) - coordinates.append((symbol, coordinate)) - points.append(Point(coordinates)) - return points - - def points(self): - if not self.isbounded(): - raise ValueError('domain must be bounded') - from .polyhedra import Universe, Eq - islset = self._toislset(self.polyhedra, self.symbols) - islpoints = islhelper.isl_set_points(islset) - points = [] - for islpoint in islpoints: - coordinates = {} - for index, symbol in enumerate(self.symbols): - coordinate = libisl.isl_point_get_coordinate_val(islpoint, - libisl.isl_dim_set, index) - coordinate = islhelper.isl_val_to_int(coordinate) - coordinates[symbol] = coordinate - points.append(Point(coordinates)) - return points - - def __contains__(self, point): - for polyhedron in self.polyhedra: - if point in polyhedron: - return True - return False - - def subs(self, symbol, expression=None): - polyhedra = [polyhedron.subs(symbol, expression) - for polyhedron in self.polyhedra] - return Domain(*polyhedra) - - @classmethod - def _fromislset(cls, islset, symbols): - from .polyhedra import Polyhedron - islset = libisl.isl_set_remove_divs(islset) - islbsets = islhelper.isl_set_basic_sets(islset) - libisl.isl_set_free(islset) - polyhedra = [] - for islbset in islbsets: - polyhedron = Polyhedron._fromislbasicset(islbset, symbols) - polyhedra.append(polyhedron) - if len(polyhedra) == 0: - from .polyhedra import Empty - return Empty - elif len(polyhedra) == 1: - return polyhedra[0] - else: - self = object().__new__(Domain) - self._polyhedra = tuple(polyhedra) - self._symbols = cls._xsymbols(polyhedra) - self._dimension = len(self._symbols) - return self - - @classmethod - def _toislset(cls, polyhedra, symbols): - polyhedron = polyhedra[0] - islbset = polyhedron._toislbasicset(polyhedron.equalities, - polyhedron.inequalities, symbols) - islset1 = libisl.isl_set_from_basic_set(islbset) - for polyhedron in polyhedra[1:]: - islbset = polyhedron._toislbasicset(polyhedron.equalities, - polyhedron.inequalities, symbols) - islset2 = libisl.isl_set_from_basic_set(islbset) - islset1 = libisl.isl_set_union(islset1, islset2) - return islset1 - - @classmethod - def _fromast(cls, node): - from .polyhedra import Polyhedron - if isinstance(node, ast.Module) and len(node.body) == 1: - return cls._fromast(node.body[0]) - elif isinstance(node, ast.Expr): - return cls._fromast(node.value) - elif isinstance(node, ast.UnaryOp): - domain = cls._fromast(node.operand) - if isinstance(node.operand, ast.invert): - return Not(domain) - elif isinstance(node, ast.BinOp): - domain1 = cls._fromast(node.left) - domain2 = cls._fromast(node.right) - if isinstance(node.op, ast.BitAnd): - return And(domain1, domain2) - elif isinstance(node.op, ast.BitOr): - return Or(domain1, domain2) - elif isinstance(node, ast.Compare): - equalities = [] - inequalities = [] - left = Expression._fromast(node.left) - for i in range(len(node.ops)): - op = node.ops[i] - right = Expression._fromast(node.comparators[i]) - if isinstance(op, ast.Lt): - inequalities.append(right - left - 1) - elif isinstance(op, ast.LtE): - inequalities.append(right - left) - elif isinstance(op, ast.Eq): - equalities.append(left - right) - elif isinstance(op, ast.GtE): - inequalities.append(left - right) - elif isinstance(op, ast.Gt): - inequalities.append(left - right - 1) - else: - break - left = right - else: - return Polyhedron(equalities, inequalities) - raise SyntaxError('invalid syntax') - - _RE_BRACES = re.compile(r'^\{\s*|\s*\}$') - _RE_EQ = re.compile(r'([^<=>])=([^<=>])') - _RE_AND = re.compile(r'\band\b|,|&&|/\\|∧|∩') - _RE_OR = re.compile(r'\bor\b|;|\|\||\\/|∨|∪') - _RE_NOT = re.compile(r'\bnot\b|!|¬') - _RE_NUM_VAR = Expression._RE_NUM_VAR - _RE_OPERATORS = re.compile(r'(&|\||~)') - - @classmethod - def fromstring(cls, string): - # remove curly brackets - string = cls._RE_BRACES.sub(r'', string) - # replace '=' by '==' - string = cls._RE_EQ.sub(r'\1==\2', string) - # replace 'and', 'or', 'not' - string = cls._RE_AND.sub(r' & ', string) - string = cls._RE_OR.sub(r' | ', string) - string = cls._RE_NOT.sub(r' ~', string) - # add implicit multiplication operators, e.g. '5x' -> '5*x' - string = cls._RE_NUM_VAR.sub(r'\1*\2', string) - # add parentheses to force precedence - tokens = cls._RE_OPERATORS.split(string) - for i, token in enumerate(tokens): - if i % 2 == 0: - token = '({})'.format(token) - tokens[i] = token - string = ''.join(tokens) - tree = ast.parse(string, 'eval') - return cls._fromast(tree) - - def __repr__(self): - assert len(self.polyhedra) >= 2 - strings = [repr(polyhedron) for polyhedron in self.polyhedra] - return 'Or({})'.format(', '.join(strings)) - - def _repr_latex_(self): - strings = [] - for polyhedron in self.polyhedra: - strings.append('({})'.format(polyhedron._repr_latex_().strip('$'))) - return '${}$'.format(' \\vee '.join(strings)) - - @classmethod - def fromsympy(cls, expr): - import sympy - from .polyhedra import Lt, Le, Eq, Ne, Ge, Gt - funcmap = { - sympy.And: And, sympy.Or: Or, sympy.Not: Not, - sympy.Lt: Lt, sympy.Le: Le, - sympy.Eq: Eq, sympy.Ne: Ne, - sympy.Ge: Ge, sympy.Gt: Gt, - } - if expr.func in funcmap: - args = [Domain.fromsympy(arg) for arg in expr.args] - return funcmap[expr.func](*args) - elif isinstance(expr, sympy.Expr): - return Expression.fromsympy(expr) - raise ValueError('non-domain expression: {!r}'.format(expr)) - - def tosympy(self): - import sympy - polyhedra = [polyhedron.tosympy() for polyhedron in polyhedra] - return sympy.Or(*polyhedra) - - -def And(*domains): - if len(domains) == 0: - from .polyhedra import Universe - return Universe - else: - return domains[0].intersection(*domains[1:]) - -def Or(*domains): - if len(domains) == 0: - from .polyhedra import Empty - return Empty - else: - return domains[0].union(*domains[1:]) - -def Not(domain): - return ~domain