X-Git-Url: https://scm.cri.ensmp.fr/git/linpy.git/blobdiff_plain/6ec23dc57252ffe01aa60595fc499f580381e4a9..9de08f6d690b0ad9f279e9ff78646c307b6beb7e:/pypol/geometry.py?ds=sidebyside diff --git a/pypol/geometry.py b/pypol/geometry.py index d1d6770..ea751ae 100644 --- a/pypol/geometry.py +++ b/pypol/geometry.py @@ -1,9 +1,17 @@ +import math +import numbers +import operator -from abc import ABC, abstractmethod, abstractproperty +from abc import ABC, abstractproperty, abstractmethod +from collections import OrderedDict, Mapping + +from .linexprs import Symbol __all__ = [ 'GeometricObject', + 'Point', + 'Vector', ] @@ -23,3 +31,223 @@ class GeometricObject(ABC): def asdomain(self): return self.aspolyhedron() + + +class Coordinates: + + __slots__ = ( + '_coordinates', + ) + + def __new__(cls, coordinates): + if isinstance(coordinates, Mapping): + coordinates = coordinates.items() + self = object().__new__(cls) + self._coordinates = OrderedDict() + for symbol, coordinate in sorted(coordinates, + key=lambda item: item[0].sortkey()): + if not isinstance(symbol, Symbol): + raise TypeError('symbols must be Symbol instances') + if not isinstance(coordinate, numbers.Real): + raise TypeError('coordinates must be real numbers') + self._coordinates[symbol] = coordinate + return self + + @property + def symbols(self): + return tuple(self._coordinates) + + @property + def dimension(self): + return len(self.symbols) + + def coordinates(self): + yield from self._coordinates.items() + + def coordinate(self, symbol): + if not isinstance(symbol, Symbol): + raise TypeError('symbol must be a Symbol instance') + return self._coordinates[symbol] + + __getitem__ = coordinate + + def __bool__(self): + return any(self._coordinates.values()) + + def __hash__(self): + return hash(tuple(self.coordinates())) + + def __repr__(self): + string = ', '.join(['{!r}: {!r}'.format(symbol, coordinate) + for symbol, coordinate in self.coordinates()]) + return '{}({{{}}})'.format(self.__class__.__name__, string) + + def _map(self, func): + for symbol, coordinate in self.coordinates(): + yield symbol, func(coordinate) + + def _iter2(self, other): + if self.symbols != other.symbols: + raise ValueError('arguments must belong to the same space') + coordinates1 = self._coordinates.values() + coordinates2 = other._coordinates.values() + yield from zip(self.symbols, coordinates1, coordinates2) + + def _map2(self, other, func): + for symbol, coordinate1, coordinate2 in self._iter2(other): + yield symbol, func(coordinate1, coordinate2) + + +class Point(Coordinates, GeometricObject): + """ + This class represents points in space. + """ + + def isorigin(self): + return not bool(self) + + def __hash__(self): + return super().__hash__() + + def __add__(self, other): + if not isinstance(other, Vector): + return NotImplemented + coordinates = self._map2(other, operator.add) + return Point(coordinates) + + def __sub__(self, other): + coordinates = [] + if isinstance(other, Point): + coordinates = self._map2(other, operator.sub) + return Vector(coordinates) + elif isinstance(other, Vector): + coordinates = self._map2(other, operator.sub) + return Point(coordinates) + else: + return NotImplemented + + def __eq__(self, other): + return isinstance(other, Point) and \ + self._coordinates == other._coordinates + + def aspolyhedron(self): + from .polyhedra import Polyhedron + equalities = [] + for symbol, coordinate in self.coordinates(): + equalities.append(symbol - coordinate) + return Polyhedron(equalities) + + +class Vector(Coordinates): + """ + This class represents displacements in space. + """ + + def __new__(cls, initial, terminal=None): + if not isinstance(initial, Point): + initial = Point(initial) + if terminal is None: + coordinates = initial._coordinates + else: + if not isinstance(terminal, Point): + terminal = Point(terminal) + coordinates = terminal._map2(initial, operator.sub) + return super().__new__(cls, coordinates) + + def isnull(self): + return not bool(self) + + def __hash__(self): + return super().__hash__() + + def __add__(self, other): + if isinstance(other, (Point, Vector)): + coordinates = self._map2(other, operator.add) + return other.__class__(coordinates) + return NotImplemented + + def angle(self, other): + """ + Retrieve the angle required to rotate the vector into the vector passed + in argument. The result is an angle in radians, ranging between -pi and + pi. + """ + if not isinstance(other, Vector): + raise TypeError('argument must be a Vector instance') + cosinus = self.dot(other) / (self.norm()*other.norm()) + return math.acos(cosinus) + + def cross(self, other): + """ + Calculate the cross product of two Vector3D structures. + """ + if not isinstance(other, Vector): + raise TypeError('other must be a Vector instance') + if self.dimension != 3 or other.dimension != 3: + raise ValueError('arguments must be three-dimensional vectors') + if self.symbols != other.symbols: + raise ValueError('arguments must belong to the same space') + x, y, z = self.symbols + coordinates = [] + coordinates.append((x, self[y]*other[z] - self[z]*other[y])) + coordinates.append((y, self[z]*other[x] - self[x]*other[z])) + coordinates.append((z, self[x]*other[y] - self[y]*other[x])) + return Vector(coordinates) + + def __truediv__(self, other): + """ + Divide the vector by the specified scalar and returns the result as a + vector. + """ + if not isinstance(other, numbers.Real): + return NotImplemented + coordinates = self._map(lambda coordinate: coordinate / other) + return Vector(coordinates) + + def dot(self, other): + """ + Calculate the dot product of two vectors. + """ + if not isinstance(other, Vector): + raise TypeError('argument must be a Vector instance') + result = 0 + for symbol, coordinate1, coordinate2 in self._iter2(other): + result += coordinate1 * coordinate2 + return result + + def __eq__(self, other): + return isinstance(other, Vector) and \ + self._coordinates == other._coordinates + + def __hash__(self): + return hash(tuple(self.coordinates())) + + def __mul__(self, other): + if not isinstance(other, numbers.Real): + return NotImplemented + coordinates = self._map(lambda coordinate: other * coordinate) + return Vector(coordinates) + + __rmul__ = __mul__ + + def __neg__(self): + coordinates = self._map(operator.neg) + return Vector(coordinates) + + def norm(self): + return math.sqrt(self.norm2()) + + def norm2(self): + result = 0 + for coordinate in self._coordinates.values(): + result += coordinate ** 2 + return result + + def asunit(self): + return self / self.norm() + + def __sub__(self, other): + if isinstance(other, (Point, Vector)): + coordinates = self._map2(other, operator.sub) + return other.__class__(coordinates) + return NotImplemented