X-Git-Url: https://scm.cri.ensmp.fr/git/linpy.git/blobdiff_plain/7f4790ef28ae6335966de93be23a8be9320d8cde..af70cb24e2db153fa0afad42296cc1528b82b2a2:/doc/reference.rst diff --git a/doc/reference.rst b/doc/reference.rst index 4dcfbdc..4e71658 100644 --- a/doc/reference.rst +++ b/doc/reference.rst @@ -103,7 +103,7 @@ For example, if ``x`` is a :class:`Symbol`, then ``x + 1`` is an instance of :cl A linear expression with no symbol, only a constant term, is automatically subclassed as a :class:`Rational` instance. .. method:: coefficient(symbol) - __getitem__(symbol) + __getitem__(symbol) Return the coefficient value of the given symbol, or ``0`` if the symbol does not appear in the expression. @@ -148,11 +148,11 @@ For example, if ``x`` is a :class:`Symbol`, then ``x + 1`` is an instance of :cl .. method:: __mul__(value) - Return the product of the linear expression as a rational. + Return the product of the linear expression by a rational. .. method:: __truediv__(value) - Return the quotient of the linear expression as a rational. + Return the quotient of the linear expression by a rational. .. method:: __eq__(expr) @@ -161,9 +161,9 @@ For example, if ``x`` is a :class:`Symbol`, then ``x + 1`` is an instance of :cl As explained below, it is possible to create polyhedra from linear expressions using comparison methods. .. method:: __lt__(expr) - __le__(expr) - __ge__(expr) - __gt__(expr) + __le__(expr) + __ge__(expr) + __gt__(expr) Create a new :class:`Polyhedron` instance whose unique constraint is the comparison between two linear expressions. As an alternative, functions :func:`Lt`, :func:`Le`, :func:`Ge` and :func:`Gt` can be used. @@ -178,7 +178,7 @@ For example, if ``x`` is a :class:`Symbol`, then ``x + 1`` is an instance of :cl Return the expression multiplied by its lowest common denominator to make all values integer. .. method:: subs(symbol, expression) - subs(pairs) + subs(pairs) Substitute the given symbol by an expression and return the resulting expression. Raise :exc:`TypeError` if the resulting expression is not linear. @@ -203,7 +203,7 @@ For example, if ``x`` is a :class:`Symbol`, then ``x + 1`` is an instance of :cl .. classmethod:: fromsympy(expr) Create a linear expression from a :mod:`sympy` expression. - Raise :exc:`ValueError` is the :mod:`sympy` expression is not linear. + Raise :exc:`TypeError` is the :mod:`sympy` expression is not linear. .. method:: tosympy() @@ -280,7 +280,7 @@ This space can be unbounded. .. method:: widen(polyhedron) - Compute the standard widening of two polyhedra, à la Halbwachs. + Compute the *standard widening* of two polyhedra, à la Halbwachs. .. data:: Empty @@ -329,7 +329,7 @@ Unlike polyhedra, domains allow exact computation of union and complementary ope .. attribute:: symbols - The tuple of symbols present in the domain expression, sorted according to :meth:`Symbol.sortkey`. + The tuple of symbols present in the domain equations, sorted according to :meth:`Symbol.sortkey`. .. attribute:: dimension @@ -435,7 +435,7 @@ Unlike polyhedra, domains allow exact computation of union and complementary ope .. method:: __contains__(point) - Return ``True`` if the :class:`Point` is contained within the domain. + Return ``True`` if the point is contained within the domain. .. method:: faces() @@ -567,7 +567,7 @@ Geometric Objects The dimension of the point, i.e. the number of symbols present in it. .. method:: coordinate(symbol) - __getitem__(symbol) + __getitem__(symbol) Return the coordinate value of the given symbol. Raise :exc:`KeyError` if the symbol is not involved in the point. @@ -590,10 +590,10 @@ Geometric Objects .. method:: __add__(vector) - Translate the point by a :class:`Vector` instance and return the resulting point. + Translate the point by a :class:`Vector` object and return the resulting point. .. method:: __sub__(point) - __sub__(vector) + __sub__(vector) The first version substracts a point from another and returns the resulting vector. The second version translates the point by the opposite vector of *vector* and returns the resulting point. @@ -604,9 +604,10 @@ Geometric Objects .. class:: Vector(coordinates) + Vector(point1, point2) - Create a point from a dictionary or a sequence that maps the symbols to their coordinates, similar to :meth:`Point`. - Coordinates must be rational numbers. + The first version creates a vector from a dictionary or a sequence that maps the symbols to their coordinates, similarly to :meth:`Point`. + The second version creates a vector between two points. :class:`Vector` instances are hashable and should be treated as immutable. @@ -619,7 +620,7 @@ Geometric Objects The dimension of the point, i.e. the number of symbols present in it. .. method:: coordinate(symbol) - __getitem__(symbol) + __getitem__(symbol) Return the coordinate value of the given symbol. Raise :exc:`KeyError` if the symbol is not involved in the point. @@ -641,13 +642,13 @@ Geometric Objects Return ``True`` if not all coordinates are ``0``. .. method:: __add__(point) - __add__(vector) + __add__(vector) The first version translates the point *point* to the vector and returns the resulting point. The second version adds vector *vector* to the vector and returns the resulting vector. .. method:: __sub__(point) - __sub__(vector) + __sub__(vector) The first version substracts a point from a vector and returns the resulting point. The second version returns the difference vector between two vectors. @@ -656,6 +657,18 @@ Geometric Objects Return the opposite vector. + .. method:: __mul__(value) + + Multiply the vector by a scalar value and return the resulting vector. + + .. method:: __truediv__(value) + + Divide the vector by a scalar value and return the resulting vector. + + .. method:: __eq__(vector) + + Test whether two vectors are equal. + .. method:: angle(vector) Retrieve the angle required to rotate the vector into the vector passed in argument. @@ -664,31 +677,19 @@ Geometric Objects .. method:: cross(vector) Compute the cross product of two 3D vectors. - If either one of the vectors is not tridimensional, a :exc:`ValueError` exception is raised. + If either one of the vectors is not three-dimensional, a :exc:`ValueError` exception is raised. .. method:: dot(vector) Compute the dot product of two vectors. - .. method:: __eq__(vector) - - Test whether two vectors are equal. - - .. method:: __mul__(value) - - Multiply the vector by a scalar value and return the resulting vector. - - .. method:: __truediv__(value) - - Divide the vector by a scalar value and return the resulting vector. - .. method:: norm() Return the norm of the vector. .. method:: norm2() - Return the square norm of the vector. + Return the squared norm of the vector. .. method:: asunit()