X-Git-Url: https://scm.cri.ensmp.fr/git/linpy.git/blobdiff_plain/82e100a9d5e7db532fda649849dc784148e55069..25ce908cffca380f930182a77c1e5a4491042a1c:/pypol/domains.py~ diff --git a/pypol/domains.py~ b/pypol/domains.py~ new file mode 100644 index 0000000..be9dd4b --- /dev/null +++ b/pypol/domains.py~ @@ -0,0 +1,695 @@ +import ast +import functools +import re +import math + +from fractions import Fraction + +from . import islhelper +from .islhelper import mainctx, libisl +from .linexprs import Expression, Symbol, Rational +from .geometry import GeometricObject, Point, Vector + + +__all__ = [ + 'Domain', + 'And', 'Or', 'Not', +] + + +@functools.total_ordering +class Domain(GeometricObject): + + __slots__ = ( + '_polyhedra', + '_symbols', + '_dimension', + ) + + def __new__(cls, *polyhedra): + from .polyhedra import Polyhedron + if len(polyhedra) == 1: + argument = polyhedra[0] + if isinstance(argument, str): + return cls.fromstring(argument) + elif isinstance(argument, GeometricObject): + return argument.aspolyhedron() + else: + raise TypeError('argument must be a string ' + 'or a GeometricObject instance') + else: + for polyhedron in polyhedra: + if not isinstance(polyhedron, Polyhedron): + raise TypeError('arguments must be Polyhedron instances') + symbols = cls._xsymbols(polyhedra) + islset = cls._toislset(polyhedra, symbols) + return cls._fromislset(islset, symbols) + + @classmethod + def _xsymbols(cls, iterator): + """ + Return the ordered tuple of symbols present in iterator. + """ + symbols = set() + for item in iterator: + symbols.update(item.symbols) + return tuple(sorted(symbols, key=Symbol.sortkey)) + + @property + def polyhedra(self): + return self._polyhedra + + @property + def symbols(self): + return self._symbols + + @property + def dimension(self): + return self._dimension + + def disjoint(self): + """ + Returns this set as disjoint. + """ + islset = self._toislset(self.polyhedra, self.symbols) + islset = libisl.isl_set_make_disjoint(mainctx, islset) + return self._fromislset(islset, self.symbols) + + def isempty(self): + """ + Returns true if this set is an Empty set. + """ + islset = self._toislset(self.polyhedra, self.symbols) + empty = bool(libisl.isl_set_is_empty(islset)) + libisl.isl_set_free(islset) + return empty + + def __bool__(self): + return not self.isempty() + + def isuniverse(self): + """ + Returns true if this set is the Universe set. + """ + islset = self._toislset(self.polyhedra, self.symbols) + universe = bool(libisl.isl_set_plain_is_universe(islset)) + libisl.isl_set_free(islset) + return universe + + def isbounded(self): + """ + Returns true if this set is bounded. + """ + islset = self._toislset(self.polyhedra, self.symbols) + bounded = bool(libisl.isl_set_is_bounded(islset)) + libisl.isl_set_free(islset) + return bounded + + def __eq__(self, other): + """ + Returns true if two sets are equal. + """ + symbols = self._xsymbols([self, other]) + islset1 = self._toislset(self.polyhedra, symbols) + islset2 = other._toislset(other.polyhedra, symbols) + equal = bool(libisl.isl_set_is_equal(islset1, islset2)) + libisl.isl_set_free(islset1) + libisl.isl_set_free(islset2) + return equal + + def isdisjoint(self, other): + """ + Return True if two sets have a null intersection. + """ + symbols = self._xsymbols([self, other]) + islset1 = self._toislset(self.polyhedra, symbols) + islset2 = self._toislset(other.polyhedra, symbols) + equal = bool(libisl.isl_set_is_disjoint(islset1, islset2)) + libisl.isl_set_free(islset1) + libisl.isl_set_free(islset2) + return equal + + def issubset(self, other): + """ + Report whether another set contains this set. + """ + symbols = self._xsymbols([self, other]) + islset1 = self._toislset(self.polyhedra, symbols) + islset2 = self._toislset(other.polyhedra, symbols) + equal = bool(libisl.isl_set_is_subset(islset1, islset2)) + libisl.isl_set_free(islset1) + libisl.isl_set_free(islset2) + return equal + + def __le__(self, other): + """ + Returns true if this set is less than or equal to another set. + """ + return self.issubset(other) + + def __lt__(self, other): + """ + Returns true if this set is less than another set. + """ + symbols = self._xsymbols([self, other]) + islset1 = self._toislset(self.polyhedra, symbols) + islset2 = self._toislset(other.polyhedra, symbols) + equal = bool(libisl.isl_set_is_strict_subset(islset1, islset2)) + libisl.isl_set_free(islset1) + libisl.isl_set_free(islset2) + return equal + + def complement(self): + """ + Returns the complement of this set. + """ + islset = self._toislset(self.polyhedra, self.symbols) + islset = libisl.isl_set_complement(islset) + return self._fromislset(islset, self.symbols) + + def __invert__(self): + """ + Returns the complement of this set. + """ + return self.complement() + + def simplify(self): + """ + Returns a set without redundant constraints. + """ + islset = self._toislset(self.polyhedra, self.symbols) + islset = libisl.isl_set_remove_redundancies(islset) + return self._fromislset(islset, self.symbols) + + def aspolyhedron(self): + """ + Returns polyhedral hull of set. + """ + from .polyhedra import Polyhedron + islset = self._toislset(self.polyhedra, self.symbols) + islbset = libisl.isl_set_polyhedral_hull(islset) + return Polyhedron._fromislbasicset(islbset, self.symbols) + + def asdomain(self): + return self + + def project(self, dims): + """ + Return new set with given dimensions removed. + """ + islset = self._toislset(self.polyhedra, self.symbols) + n = 0 + for index, symbol in reversed(list(enumerate(self.symbols))): + if symbol in dims: + n += 1 + elif n > 0: + islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, index + 1, n) + n = 0 + if n > 0: + islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, 0, n) + dims = [symbol for symbol in self.symbols if symbol not in dims] + return Domain._fromislset(islset, dims) + + def sample(self): + """ + Returns a single subset of the input. + """ + islset = self._toislset(self.polyhedra, self.symbols) + islpoint = libisl.isl_set_sample_point(islset) + if bool(libisl.isl_point_is_void(islpoint)): + libisl.isl_point_free(islpoint) + raise ValueError('domain must be non-empty') + point = {} + for index, symbol in enumerate(self.symbols): + coordinate = libisl.isl_point_get_coordinate_val(islpoint, + libisl.isl_dim_set, index) + coordinate = islhelper.isl_val_to_int(coordinate) + point[symbol] = coordinate + libisl.isl_point_free(islpoint) + return point + + def intersection(self, *others): + """ + Return the intersection of two sets as a new set. + """ + if len(others) == 0: + return self + symbols = self._xsymbols((self,) + others) + islset1 = self._toislset(self.polyhedra, symbols) + for other in others: + islset2 = other._toislset(other.polyhedra, symbols) + islset1 = libisl.isl_set_intersect(islset1, islset2) + return self._fromislset(islset1, symbols) + + def __and__(self, other): + """ + Return the intersection of two sets as a new set. + """ + return self.intersection(other) + + def union(self, *others): + """ + Return the union of sets as a new set. + """ + if len(others) == 0: + return self + symbols = self._xsymbols((self,) + others) + islset1 = self._toislset(self.polyhedra, symbols) + for other in others: + islset2 = other._toislset(other.polyhedra, symbols) + islset1 = libisl.isl_set_union(islset1, islset2) + return self._fromislset(islset1, symbols) + + def __or__(self, other): + """ + Return a new set with elements from both sets. + """ + return self.union(other) + + def __add__(self, other): + """ + Return new set containing all elements in both sets. + """ + return self.union(other) + + def difference(self, other): + """ + Return the difference of two sets as a new set. + """ + symbols = self._xsymbols([self, other]) + islset1 = self._toislset(self.polyhedra, symbols) + islset2 = other._toislset(other.polyhedra, symbols) + islset = libisl.isl_set_subtract(islset1, islset2) + return self._fromislset(islset, symbols) + + def __sub__(self, other): + """ + Return the difference of two sets as a new set. + """ + return self.difference(other) + + def lexmin(self): + """ + Return a new set containing the lexicographic minimum of the elements in the set. + """ + islset = self._toislset(self.polyhedra, self.symbols) + islset = libisl.isl_set_lexmin(islset) + return self._fromislset(islset, self.symbols) + + def lexmax(self): + """ + Return a new set containing the lexicographic maximum of the elements in the set. + """ + islset = self._toislset(self.polyhedra, self.symbols) + islset = libisl.isl_set_lexmax(islset) + return self._fromislset(islset, self.symbols) + + def num_parameters(self): + """ + Return the total number of parameters, input, output or set dimensions. + """ + islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols) + num = libisl.isl_basic_set_dim(islbset, libisl.isl_dim_set) + return num + + def involves_dims(self, dims): + """ + Returns true if set depends on given dimensions. + """ + islset = self._toislset(self.polyhedra, self.symbols) + dims = sorted(dims) + symbols = sorted(list(self.symbols)) + n = 0 + if len(dims)>0: + for dim in dims: + if dim in symbols: + first = symbols.index(dims[0]) + n +=1 + else: + first = 0 + else: + return False + value = bool(libisl.isl_set_involves_dims(islset, libisl.isl_dim_set, first, n)) + libisl.isl_set_free(islset) + return value + + _RE_COORDINATE = re.compile(r'\((?P\-?\d+)\)(/(?P\d+))?') + + def vertices(self): + """ + Return a list of vertices for this Polygon. + """ + from .polyhedra import Polyhedron + islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols) + vertices = libisl.isl_basic_set_compute_vertices(islbset); + vertices = islhelper.isl_vertices_vertices(vertices) + points = [] + for vertex in vertices: + expr = libisl.isl_vertex_get_expr(vertex) + coordinates = [] + if islhelper.isl_version < '0.13': + constraints = islhelper.isl_basic_set_constraints(expr) + for constraint in constraints: + constant = libisl.isl_constraint_get_constant_val(constraint) + constant = islhelper.isl_val_to_int(constant) + for index, symbol in enumerate(self.symbols): + coefficient = libisl.isl_constraint_get_coefficient_val(constraint, + libisl.isl_dim_set, index) + coefficient = islhelper.isl_val_to_int(coefficient) + if coefficient != 0: + coordinate = -Fraction(constant, coefficient) + coordinates.append((symbol, coordinate)) + else: + string = islhelper.isl_multi_aff_to_str(expr) + matches = self._RE_COORDINATE.finditer(string) + for symbol, match in zip(self.symbols, matches): + numerator = int(match.group('num')) + denominator = match.group('den') + denominator = 1 if denominator is None else int(denominator) + coordinate = Fraction(numerator, denominator) + coordinates.append((symbol, coordinate)) + points.append(Point(coordinates)) + return points + + def points(self): + """ + Returns the points contained in the set. + """ + if not self.isbounded(): + raise ValueError('domain must be bounded') + from .polyhedra import Universe, Eq + islset = self._toislset(self.polyhedra, self.symbols) + islpoints = islhelper.isl_set_points(islset) + points = [] + for islpoint in islpoints: + coordinates = {} + for index, symbol in enumerate(self.symbols): + coordinate = libisl.isl_point_get_coordinate_val(islpoint, + libisl.isl_dim_set, index) + coordinate = islhelper.isl_val_to_int(coordinate) + coordinates[symbol] = coordinate + points.append(Point(coordinates)) + return points + + @classmethod + def _polygon_inner_point(cls, points): + symbols = points[0].symbols + coordinates = {symbol: 0 for symbol in symbols} + for point in points: + for symbol, coordinate in point.coordinates(): + coordinates[symbol] += coordinate + for symbol in symbols: + coordinates[symbol] /= len(points) + return Point(coordinates) + + @classmethod + def _sort_polygon_2d(cls, points): + if len(points) <= 3: + return points + o = cls._polygon_inner_point(points) + angles = {} + for m in points: + om = Vector(o, m) + dx, dy = (coordinate for symbol, coordinate in om.coordinates()) + angle = math.atan2(dy, dx) + angles[m] = angle + return sorted(points, key=angles.get) + + @classmethod + def _sort_polygon_3d(cls, points): + if len(points) <= 3: + return points + o = cls._polygon_inner_point(points) + a = points[0] + oa = Vector(o, a) + norm_oa = oa.norm() + for b in points[1:]: + ob = Vector(o, b) + u = oa.cross(ob) + if not u.isnull(): + u = u.asunit() + break + else: + raise ValueError('degenerate polygon') + angles = {a: 0.} + for m in points[1:]: + om = Vector(o, m) + normprod = norm_oa * om.norm() + cosinus = max(oa.dot(om) / normprod, -1.) + sinus = u.dot(oa.cross(om)) / normprod + angle = math.acos(cosinus) + angle = math.copysign(angle, sinus) + angles[m] = angle + return sorted(points, key=angles.get) + + def faces(self): + faces = [] + for polyhedron in self.polyhedra: + vertices = polyhedron.vertices() + for constraint in polyhedron.constraints: + face = [] + for vertex in vertices: + if constraint.subs(vertex.coordinates()) == 0: + face.append(vertex) + if len(face) >= 3: + faces.append(face) + return faces + + def _plot_2d(self, plot=None, **kwargs): + import matplotlib.pyplot as plt + from matplotlib.patches import Polygon + if plot is None: + fig = plt.figure() + plot = fig.add_subplot(1, 1, 1) + xmin, xmax = plot.get_xlim() + ymin, ymax = plot.get_ylim() + for polyhedron in self.polyhedra: + vertices = polyhedron._sort_polygon_2d(polyhedron.vertices()) + xys = [tuple(vertex.values()) for vertex in vertices] + xs, ys = zip(*xys) + xmin, xmax = min(xmin, float(min(xs))), max(xmax, float(max(xs))) + ymin, ymax = min(ymin, float(min(ys))), max(ymax, float(max(ys))) + plot.add_patch(Polygon(xys, closed=True, **kwargs)) + plot.set_xlim(xmin, xmax) + plot.set_ylim(ymin, ymax) + return plot + + def _plot_3d(self, plot=None, **kwargs): + import matplotlib.pyplot as plt + from mpl_toolkits.mplot3d import Axes3D + from mpl_toolkits.mplot3d.art3d import Poly3DCollection + if plot is None: + fig = plt.figure() + axes = Axes3D(fig) + else: + axes = plot + xmin, xmax = axes.get_xlim() + ymin, ymax = axes.get_ylim() + zmin, zmax = axes.get_zlim() + poly_xyzs = [] + for vertices in self.faces(): + vertices = self._sort_polygon_3d(vertices) + vertices.append(vertices[0]) + face_xyzs = [tuple(vertex.values()) for vertex in vertices] + xs, ys, zs = zip(*face_xyzs) + xmin, xmax = min(xmin, float(min(xs))), max(xmax, float(max(xs))) + ymin, ymax = min(ymin, float(min(ys))), max(ymax, float(max(ys))) + zmin, zmax = min(zmin, float(min(zs))), max(zmax, float(max(zs))) + poly_xyzs.append(face_xyzs) + collection = Poly3DCollection(poly_xyzs, **kwargs) + axes.add_collection3d(collection) + axes.set_xlim(xmin, xmax) + axes.set_ylim(ymin, ymax) + axes.set_zlim(zmin, zmax) + return axes + + def plot(self, plot=None, **kwargs): + """ + Display plot of this set. + """ + if not self.isbounded(): + raise ValueError('domain must be bounded') + elif self.dimension == 2: + return self._plot_2d(plot=plot, **kwargs) + elif self.dimension == 3: + return self._plot_3d(plot=plot, **kwargs) + else: + raise ValueError('polyhedron must be 2 or 3-dimensional') + + def __contains__(self, point): + for polyhedron in self.polyhedra: + if point in polyhedron: + return True + return False + + def subs(self, symbol, expression=None): + polyhedra = [polyhedron.subs(symbol, expression) + for polyhedron in self.polyhedra] + return Domain(*polyhedra) + + @classmethod + def _fromislset(cls, islset, symbols): + from .polyhedra import Polyhedron + islset = libisl.isl_set_remove_divs(islset) + islbsets = islhelper.isl_set_basic_sets(islset) + libisl.isl_set_free(islset) + polyhedra = [] + for islbset in islbsets: + polyhedron = Polyhedron._fromislbasicset(islbset, symbols) + polyhedra.append(polyhedron) + if len(polyhedra) == 0: + from .polyhedra import Empty + return Empty + elif len(polyhedra) == 1: + return polyhedra[0] + else: + self = object().__new__(Domain) + self._polyhedra = tuple(polyhedra) + self._symbols = cls._xsymbols(polyhedra) + self._dimension = len(self._symbols) + return self + + @classmethod + def _toislset(cls, polyhedra, symbols): + polyhedron = polyhedra[0] + islbset = polyhedron._toislbasicset(polyhedron.equalities, + polyhedron.inequalities, symbols) + islset1 = libisl.isl_set_from_basic_set(islbset) + for polyhedron in polyhedra[1:]: + islbset = polyhedron._toislbasicset(polyhedron.equalities, + polyhedron.inequalities, symbols) + islset2 = libisl.isl_set_from_basic_set(islbset) + islset1 = libisl.isl_set_union(islset1, islset2) + return islset1 + + @classmethod + def _fromast(cls, node): + from .polyhedra import Polyhedron + if isinstance(node, ast.Module) and len(node.body) == 1: + return cls._fromast(node.body[0]) + elif isinstance(node, ast.Expr): + return cls._fromast(node.value) + elif isinstance(node, ast.UnaryOp): + domain = cls._fromast(node.operand) + if isinstance(node.operand, ast.invert): + return Not(domain) + elif isinstance(node, ast.BinOp): + domain1 = cls._fromast(node.left) + domain2 = cls._fromast(node.right) + if isinstance(node.op, ast.BitAnd): + return And(domain1, domain2) + elif isinstance(node.op, ast.BitOr): + return Or(domain1, domain2) + elif isinstance(node, ast.Compare): + equalities = [] + inequalities = [] + left = Expression._fromast(node.left) + for i in range(len(node.ops)): + op = node.ops[i] + right = Expression._fromast(node.comparators[i]) + if isinstance(op, ast.Lt): + inequalities.append(right - left - 1) + elif isinstance(op, ast.LtE): + inequalities.append(right - left) + elif isinstance(op, ast.Eq): + equalities.append(left - right) + elif isinstance(op, ast.GtE): + inequalities.append(left - right) + elif isinstance(op, ast.Gt): + inequalities.append(left - right - 1) + else: + break + left = right + else: + return Polyhedron(equalities, inequalities) + raise SyntaxError('invalid syntax') + + _RE_BRACES = re.compile(r'^\{\s*|\s*\}$') + _RE_EQ = re.compile(r'([^<=>])=([^<=>])') + _RE_AND = re.compile(r'\band\b|,|&&|/\\|∧|∩') + _RE_OR = re.compile(r'\bor\b|;|\|\||\\/|∨|∪') + _RE_NOT = re.compile(r'\bnot\b|!|¬') + _RE_NUM_VAR = Expression._RE_NUM_VAR + _RE_OPERATORS = re.compile(r'(&|\||~)') + + @classmethod + def fromstring(cls, string): + # remove curly brackets + string = cls._RE_BRACES.sub(r'', string) + # replace '=' by '==' + string = cls._RE_EQ.sub(r'\1==\2', string) + # replace 'and', 'or', 'not' + string = cls._RE_AND.sub(r' & ', string) + string = cls._RE_OR.sub(r' | ', string) + string = cls._RE_NOT.sub(r' ~', string) + # add implicit multiplication operators, e.g. '5x' -> '5*x' + string = cls._RE_NUM_VAR.sub(r'\1*\2', string) + # add parentheses to force precedence + tokens = cls._RE_OPERATORS.split(string) + for i, token in enumerate(tokens): + if i % 2 == 0: + token = '({})'.format(token) + tokens[i] = token + string = ''.join(tokens) + tree = ast.parse(string, 'eval') + return cls._fromast(tree) + + def __repr__(self): + assert len(self.polyhedra) >= 2 + strings = [repr(polyhedron) for polyhedron in self.polyhedra] + return 'Or({})'.format(', '.join(strings)) + + def _repr_latex_(self): + strings = [] + for polyhedron in self.polyhedra: + strings.append('({})'.format(polyhedron._repr_latex_().strip('$'))) + return '${}$'.format(' \\vee '.join(strings)) + + @classmethod + def fromsympy(cls, expr): + import sympy + from .polyhedra import Lt, Le, Eq, Ne, Ge, Gt + funcmap = { + sympy.And: And, sympy.Or: Or, sympy.Not: Not, + sympy.Lt: Lt, sympy.Le: Le, + sympy.Eq: Eq, sympy.Ne: Ne, + sympy.Ge: Ge, sympy.Gt: Gt, + } + if expr.func in funcmap: + args = [Domain.fromsympy(arg) for arg in expr.args] + return funcmap[expr.func](*args) + elif isinstance(expr, sympy.Expr): + return Expression.fromsympy(expr) + raise ValueError('non-domain expression: {!r}'.format(expr)) + + def tosympy(self): + import sympy + polyhedra = [polyhedron.tosympy() for polyhedron in polyhedra] + return sympy.Or(*polyhedra) + + +def And(*domains): + """ + Return the intersection of two sets as a new set. + """ + if len(domains) == 0: + from .polyhedra import Universe + return Universe + else: + return domains[0].intersection(*domains[1:]) + +def Or(*domains): + """ + Return the union of sets as a new set. + """ + if len(domains) == 0: + from .polyhedra import Empty + return Empty + else: + return domains[0].union(*domains[1:]) + +def Not(domain): + """ + Returns the complement of this set. + """ + return ~domain