X-Git-Url: https://scm.cri.ensmp.fr/git/linpy.git/blobdiff_plain/af70cb24e2db153fa0afad42296cc1528b82b2a2..dbe638f61f1927ee6f3dffaaf2dc34418725f50a:/doc/reference.rst diff --git a/doc/reference.rst b/doc/reference.rst index 4e71658..8e36056 100644 --- a/doc/reference.rst +++ b/doc/reference.rst @@ -2,6 +2,7 @@ Module Reference ================ + Symbols ------- @@ -172,7 +173,6 @@ For example, if ``x`` is a :class:`Symbol`, then ``x + 1`` is an instance of :cl >>> x < y Le(x - y + 1, 0) - .. method:: scaleint() Return the expression multiplied by its lowest common denominator to make all values integer. @@ -227,6 +227,7 @@ They are implemented by the :class:`Rational` class, that inherits from both :cl See the documentation of :class:`fractions.Fraction` for more information and examples. + Polyhedra --------- @@ -278,10 +279,20 @@ This space can be unbounded. The tuple of constraints, i.e., equalities and inequalities. This is semantically equivalent to: ``equalities + inequalities``. + .. method:: convex_union(polyhedron[, ...]) + + Return the convex union of two or more polyhedra. + + .. method:: asinequalities() + + Express the polyhedron using inequalities, given as a list of expressions greater or equal to 0. + .. method:: widen(polyhedron) Compute the *standard widening* of two polyhedra, Ã  la Halbwachs. + In its current implementation, this method is slow and should not be used on large polyhedra. + .. data:: Empty @@ -291,6 +302,7 @@ This space can be unbounded. The universe polyhedron, whose set of constraints is always satisfiable, i.e. is empty. + Domains ------- @@ -493,7 +505,7 @@ The following functions create :class:`Polyhedron` or :class:`Domain` instances .. function:: Ne(expr1, expr2[, expr3, ...]) Create the domain such that ``expr1 != expr2 != expr3 ...``. - The result is a :class:`Domain`, not a :class:`Polyhedron`. + The result is a :class:`Domain` object, not a :class:`Polyhedron`. .. function:: Ge(expr1, expr2[, expr3, ...]) @@ -505,14 +517,14 @@ The following functions create :class:`Polyhedron` or :class:`Domain` instances The following functions combine :class:`Polyhedron` or :class:`Domain` instances using logic operators: -.. function:: Or(domain1, domain2[, ...]) - - Create the union domain of the domains given in arguments. - .. function:: And(domain1, domain2[, ...]) Create the intersection domain of the domains given in arguments. +.. function:: Or(domain1, domain2[, ...]) + + Create the union domain of the domains given in arguments. + .. function:: Not(domain) Create the complementary domain of the domain given in argument.