X-Git-Url: https://scm.cri.ensmp.fr/git/linpy.git/blobdiff_plain/f03bfa8b26b45b0ba2b47c6eadafa7787200a9c9..98edd00eb4b05e85f7cb1b85cff2f4d733909c57:/doc/reference.rst diff --git a/doc/reference.rst b/doc/reference.rst index 83ee9d3..64c37c6 100644 --- a/doc/reference.rst +++ b/doc/reference.rst @@ -1,4 +1,6 @@ +.. _reference: + Module Reference ================ @@ -173,7 +175,6 @@ For example, if ``x`` is a :class:`Symbol`, then ``x + 1`` is an instance of :cl >>> x < y Le(x - y + 1, 0) - .. method:: scaleint() Return the expression multiplied by its lowest common denominator to make all values integer. @@ -284,6 +285,10 @@ This space can be unbounded. Return the convex union of two or more polyhedra. + .. method:: asinequalities() + + Express the polyhedron using inequalities, given as a list of expressions greater or equal to 0. + .. method:: widen(polyhedron) Compute the *standard widening* of two polyhedra, à la Halbwachs. @@ -299,11 +304,12 @@ This space can be unbounded. The universe polyhedron, whose set of constraints is always satisfiable, i.e. is empty. + Domains ------- A *domain* is a union of polyhedra. -Unlike polyhedra, domains allow exact computation of union and complementary operations. +Unlike polyhedra, domains allow exact computation of union, subtraction and complementary operations. .. class:: Domain(*polyhedra) Domain(string) @@ -501,7 +507,7 @@ The following functions create :class:`Polyhedron` or :class:`Domain` instances .. function:: Ne(expr1, expr2[, expr3, ...]) Create the domain such that ``expr1 != expr2 != expr3 ...``. - The result is a :class:`Domain`, not a :class:`Polyhedron`. + The result is a :class:`Domain` object, not a :class:`Polyhedron`. .. function:: Ge(expr1, expr2[, expr3, ...]) @@ -513,14 +519,14 @@ The following functions create :class:`Polyhedron` or :class:`Domain` instances The following functions combine :class:`Polyhedron` or :class:`Domain` instances using logic operators: -.. function:: Or(domain1, domain2[, ...]) - - Create the union domain of the domains given in arguments. - .. function:: And(domain1, domain2[, ...]) Create the intersection domain of the domains given in arguments. +.. function:: Or(domain1, domain2[, ...]) + + Create the union domain of the domains given in arguments. + .. function:: Not(domain) Create the complementary domain of the domain given in argument.