From: Danielle Bolan Date: Fri, 27 Jun 2014 15:42:50 +0000 (+0200) Subject: added a few tests, might change the format though X-Git-Tag: 1.0~191 X-Git-Url: https://scm.cri.ensmp.fr/git/linpy.git/commitdiff_plain/0da8076d0fb7aab6c4cb61b55db4fcf3a916f588?ds=inline added a few tests, might change the format though --- diff --git a/examples/squares.py b/examples/squares.py index 7f1aa30..898f765 100755 --- a/examples/squares.py +++ b/examples/squares.py @@ -5,17 +5,50 @@ from pypol import * x, y = symbols('x y') sq1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2) -sq2 = Le(2, x) & Le(x, 4) & Le(2, y) & Le(y, 4) +sq2 = Le(1, x) & Le(x, 3) & Le(1, y) & Le(y, 3) -print('sq1 =', sq1) -print('sq2 =', sq2) +sq3 = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3) +sq4 = Le(1, x) & Le(x, 2) & Le(1, y) & Le(y, 2) +sq5 = Le(1, x) & Le(x, 2) & Le(1, y) +u = Polyhedron([]) + +print('sq1 =', sq1) #print correct square +print('sq2 =', sq2) #print correct square +print('sq3 =', sq3) #print correct square +print('sq4 =', sq4) #print correct square +print('u =', u) #print correct square +print() +print('¬sq1 =', ~sq1) #test compliment +print() +print('sq1 + sq1 =', sq1 + sq2) #test addition +print('sq1 + sq2 =', Polyhedron(sq1 + sq2)) +print('sq1 - sq1 =', u - u) +print('sq2 - sq1 =', sq2 - sq1) #test subtraction +print('sq2 - sq1 =', Polyhedron(sq2 - sq1)) +print('sq1 - sq1 =', Polyhedron(sq1 - sq1)) #test polyhedreon +print() +print('sq1 ∩ sq2 =', sq1 & sq2) #test intersection +print('sq1 ∪ sq2 =', sq1 | sq2) #test union +print() +print('sq1 ⊔ sq2 =', Polyhedron(sq1 | sq2)) #test convex union +print() +print('check if sq1 and sq2 disjoint:', sq1.isdisjoint(sq2)) #should return false +print() +print('sq1 disjoint:', sq1.disjoint()) #make disjoint +print('sq2 disjoint:', sq2.disjoint()) #make disjoint +print() +print('is square 1 universe?:', sq1.isuniverse()) #test if square is universe +print('is u universe?:', u.isuniverse()) #test if square is universe print() -print('¬sq1 =', ~sq1) +print('is sq1 a subset of sq2?:', sq1.issubset(sq2)) #test issubset() +print('is sq4 less than sq3?:', sq4.__lt__(sq3)) # test lt(), must be a strict subset print() -print('sq1 - sq2 =', sq1 - sq2) -print('sq1 - sq2 =', Polyhedron(sq1 - sq2)) +print('lexographic min of sq1:', sq1.lexmin()) #test lexmin() +print('lexographic max of sq1:', sq1.lexmax()) #test lexmin() +print('lexographic min of sq2:', sq2.lexmin()) #test lexmax() +print('lexographic max of sq2:', sq2.lexmax()) #test lexmax() print() -print('sq1 ∩ sq2 =', sq1 & sq2) -print('sq1 ∪ sq2 =', sq1 | sq2) +print('Polyhedral hull of sq1 is:', sq1.polyhedral_hull()) print() -print('sq1 ⊔ sq2 =', Polyhedron(sq1 | sq2)) +print('is sq1 bounded?', sq1.isbounded()) +print('is sq5 bounded?', sq5.isbounded()) diff --git a/pypol/tests/test_domains.py b/pypol/tests/test_domains.py index f9e7008..e31d8e7 100644 --- a/pypol/tests/test_domains.py +++ b/pypol/tests/test_domains.py @@ -1,12 +1,114 @@ import unittest -from ..domains import * +from pypol import * +#from ..domains import * +#from ..linexprs import symbols +#from ..polyhedra import * class TestDomain(unittest.TestCase): def setUp(self): + x, y = symbols('x y') + self.square1 = Polyhedron(inequalities=[x, 2 - x, y, 2 - y]) + self.square2 = Polyhedron(inequalities=[x - 1, 3 - x , y - 1, 3 - y]) #correct representation + self.square3 = Polyhedron(inequalities=[x, 3 - x, y, 3 - y]) + self.square4 = Polyhedron(inequalities=[x - 1, 2 - x, y - 1, 2 - y]) + self.square5 = Polyhedron(inequalities=[x, 3 - x, y, 3 - y]) + self.square6 = Polyhedron(inequalities=[x - 3, 6 - x, y - 3, 6 -y]) + self.universe = Polyhedron([]) + self.disjoint = And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)) + self.compliment = Or(Ge(-x - 1, 0), Ge(x - 3, 0), And(Ge(x, 0), Ge(-x + 2, 0), Ge(-y - 1, 0)), And(Ge(x, 0), Ge(-x + 2, 0), Ge(y - 3, 0))) + self.hull = And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)) + self.intersection = And(Ge(x - 1, 0), Ge(-x + 2, 0), Ge(y - 1, 0), Ge(-y + 2, 0)) + self.union = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0))) + self.sum1 = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0))) + self.sum2 =And(Ge(x, 0), Ge(y, 0), Ge(-y + 3, 0), Ge(-x + 3, 0), Ge(x - y + 2, 0), Ge(-x + y + 2, 0)) + self.difference1 = Or(And(Eq(x - 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)), And(Eq(y - 3, 0), Ge(x - 1, 0), Ge(-x + 2, 0))) + self.difference2 = And(Ge(x + y - 4, 0), Ge(-x + 3, 0), Ge(-y + 3, 0)) + self.lexmin = And(Eq(y, 0), Eq(x, 0)) + self.lexmax = And(Eq(y - 2, 0), Eq(x - 2, 0)) + + def test_new(self): + with self.assertRaises(TypeError): + Polyhedron(1) + + def test_disjoint(self): + self.assertEqual(self.square1.disjoint(), self.disjoint) + + def test_isempty(self): + self.assertFalse(self.square1.isempty()) + + def test_isuniverse(self): + self.assertFalse(self.square1.isuniverse()) + self.assertTrue(self.universe.isuniverse()) + + def test_isbounded(self): + self.assertTrue(self.square1.isbounded()) + + def test_eq(self): + self.assertTrue(self.square3.__eq__(self.square5)) + self.assertTrue(self.square1.__eq__(self.square1)) + self.assertFalse(self.square1.__eq__(self.square2)) + + def test_isdisjoint(self): + self.assertFalse(self.square1.isdisjoint(self.square2)) + self.assertTrue(self.square1.isdisjoint(self.square6)) + + def test_issubset(self): + self.assertTrue(self.square4.issubset(self.square5)) + self.assertFalse(self.square1.issubset(self.square2)) + + def test_le(self): + self.assertTrue(self.square4.__lt__(self.square3)) + + def test_lt(self): + self.assertTrue(self.square4.__le__(self.square3)) + + def test_compliment(self): + self.assertEqual(~self.square1, self.compliment) + + def test_simplify(self): + #maybe wont need this method + pass + + def test_polyhedral_hull(self): + self.assertEqual(self.square1.polyhedral_hull(), self.hull) + + def test_project(self): + #maybe wont need this method pass + + def test_sample(self): + pass + + def test_intersection(self): + self.assertEqual(self.square1.intersection(self.square2), self.intersection) + + def test_and(self): + self.assertEqual(self.square2 & self.square1, self.intersection) + + def test_union(self): + self.assertEqual(self.square1.union(self.square2), self.union) + + def test_or(self): + self.assertEqual(self.square1.__or__(self.square2), self.union) + + def test_add(self): + self.assertEqual(self.square2.__add__(self.square1), self.sum1) + self.assertEqual(Polyhedron(self.square1 + self.square2), self.sum2) + + def test_difference(self): + self.assertEqual(self.square2 - self.square1, self.difference1) + self.assertEqual(Polyhedron(self.square2 - self.square1), self.difference2) + + def test_lexmin(self): + self.assertEqual(self.square1.lexmin(), self.lexmin) + + def test_lexmax(self): + self.assertEqual(self.square1.lexmax(), self.lexmax) + + - def test_new(self): pass +