From: Vivien Maisonneuve Date: Wed, 2 Jul 2014 08:31:27 +0000 (+0200) Subject: New example: basic implementation of ACI'10 X-Git-Tag: 1.0~167 X-Git-Url: https://scm.cri.ensmp.fr/git/linpy.git/commitdiff_plain/10808766a204fcc854ae30fe471ada80bab1f60f?ds=sidebyside New example: basic implementation of ACI'10 --- diff --git a/examples/nsad2010.py b/examples/nsad2010.py new file mode 100755 index 0000000..14c984c --- /dev/null +++ b/examples/nsad2010.py @@ -0,0 +1,53 @@ +#!/usr/bin/env python3 + +from pypol import * + +def affine_derivative_closure(T, x0s): + + xs = [Symbol("{}'".format(x0.name)) for x0 in x0s] + dxs = [Symbol('d{}'.format(x0.name)) for x0 in x0s] + k = Symbol('k') + + for x in T.symbols: + x = Symbol(x) + assert x in x0s + xs + for dx in dxs: + assert dx.name not in T.symbols + assert k.name not in T.symbols + + T0 = T + + T1 = T0 + for i, x0 in enumerate(x0s): + x, dx = xs[i], dxs[i] + T1 &= Eq(dx, x - x0) + + T2 = T1.project_out(T0.symbols) + + T3_eqs = [] + T3_ins = [] + for T2_eq in T2.equalities: + c = T2_eq.constant + T3_eq = T2_eq + (k - 1) * c + T3_eqs.append(T3_eq) + for T2_in in T2.inequalities: + c = T2_in.constant + T3_in = T2_in + (k - 1) * c + T3_ins.append(T3_in) + T3 = Polyhedron(T3_eqs, T3_ins) + T3 &= Ge(k, 0) + + T4 = T3.project_out([k]) + for i, dx in enumerate(dxs): + x0, x = x0s[i], xs[i] + T4 &= Eq(dx, x - x0) + T4 = T4.project_out(dxs) + + return T4 + +i0, j0, i, j = symbols(['i', 'j', "i'", "j'"]) +T = Eq(i, i0 + 2) & Eq(j, j0 + 1) + +print('T =', T) +Tstar = affine_derivative_closure(T, [i0, j0]) +print('T* =', Tstar)