From: Vivien Maisonneuve Date: Tue, 15 Jul 2014 21:54:52 +0000 (+0200) Subject: More fun with plots X-Git-Tag: 1.0~106 X-Git-Url: https://scm.cri.ensmp.fr/git/linpy.git/commitdiff_plain/2a1055d4f4754fa33c53d3f155cc050e4911a2a3 More fun with plots --- diff --git a/examples/diamond.py b/examples/diamond.py index e82581e..70413e7 100755 --- a/examples/diamond.py +++ b/examples/diamond.py @@ -1,18 +1,41 @@ #!/usr/bin/env python3 +import pylab + from pypol import * x, y, z = symbols('x y z') -diam = Ge(y, x - 1) & Le(y, x + 1) & Ge(y, -x - 1) & Le(y, -x + 1) -print('diamond:', diam) -print() -rhom1 = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3) & Le(0, z) & Le(z, 3) \ -& Le(z - 2, x) & Ge(z + 2, x) & Ge(z - 1, -x) & Le(z - 5, -x) \ -& Le(z - 2, y) & Ge(z + 2, y) & Ge(z - 1, -y) & Le(z - 5, -y) \ -& Le(y - 2, x) & Ge(y + 2, x) & Ge(y - 1, -x) & Le(y - 5, -x) -rhom1.plot() -rhom2 = rhom1 & Le(x + y + z, 7) & Ge(-2, -x - y - z ) \ -& Le(x + y - z, 4) & Ge(x + y - z, -1) \ -& Le(x - y + z, 4) & Ge(x - y + z, -1) \ -& Le(-x + y + z, 4) & Ge(-x + y + z, -1) -rhom2.plot() + +# diam = Ge(y, x - 1) & Le(y, x + 1) & Ge(y, -x - 1) & Le(y, -x + 1) +# print('diamond:', diam) +# diam.plot(fill=True, edgecolor='red', facecolor='yellow') +# pylab.show() + +# Chamfered cube +cham = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3) & Le(0, z) & Le(z, 3) & \ + Le(z - 2, x) & Le(x, z + 2) & Le(1 - z, x) & Le(x, 5 - z) & \ + Le(z - 2, y) & Le(y, z + 2) & Le(1 - z, y) & Le(y, 5 - z) & \ + Le(y - 2, x) & Le(x, y + 2) & Le(1 - y, x) & Le(x, 5 - y) +cham_plot = cham.plot(facecolors=(1, 0, 0, 0.75)) +pylab.show() + +# Rhombicuboctahedron +rhom = cham & \ + Le(x + y + z, 7) & Ge(-2, -x - y - z) & \ + Le(-1, x + y - z) & Le(x + y - z, 4) & \ + Le(-1, x - y + z) & Le(x - y + z, 4) & \ + Le(-1, -x + y + z) & Le(-x + y + z, 4) +rhom.plot(facecolors=(0, 1, 0, 0.75)) +pylab.show() + +# Truncated cuboctahedron +cubo = Le(0, x) & Le(x, 5) & Le(0, y) & Le(y, 5) & Le(0, z) & Le(z, 5) & \ + Le(x -4, y) & Le(y, x + 4) & Le(-x + 1, y) & Le(y, -x + 9) & \ + Le(y -4, z) & Le(z, y + 4) & Le(-y + 1, z) & Le(z, -y + 9) & \ + Le(z -4, x) & Le(x, z + 4) & Le(-z + 1, x) & Le(x, -z + 9) & \ + Le(3, x + y + z) & Le(x + y + z, 12) & \ + Le(-2, x - y + z) & Le(x - y + z, 7) & \ + Le(-2, -x + y + z) & Le(-x + y + z, 7) & \ + Le(-2, x + y - z) & Le(x + y - z, 7) +cubo_plot = cubo.plot(facecolors=(0, 0, 1, 0.75)) +pylab.show() diff --git a/pypol/geometry.py b/pypol/geometry.py index ea751ae..1dc50eb 100644 --- a/pypol/geometry.py +++ b/pypol/geometry.py @@ -71,6 +71,9 @@ class Coordinates: __getitem__ = coordinate + def values(self): + yield from self._coordinates.values() + def __bool__(self): return any(self._coordinates.values()) diff --git a/pypol/polyhedra.py b/pypol/polyhedra.py index 5d1bfa1..a5048d1 100644 --- a/pypol/polyhedra.py +++ b/pypol/polyhedra.py @@ -290,79 +290,66 @@ class Polyhedron(Domain): faces.append(face) return faces - def plot(self): - """ - Display 3D plot of set. - """ + def _plot_2d(self, plot=None, **kwargs): + from matplotlib import pylab import matplotlib.pyplot as plt - import matplotlib.patches as patches - - if len(self.symbols)> 3: - raise TypeError - - elif len(self.symbols) == 2: - import pylab - points = [] - for verts in self.vertices(): - pairs=() - for coordinate, point in verts.coordinates(): - pairs = pairs + (float(point),) - points.append(pairs) - cent=(sum([p[0] for p in points])/len(points),sum([p[1] for p in points])/len(points)) - points.sort(key=lambda p: math.atan2(p[1]-cent[1],p[0]-cent[0])) - pylab.scatter([p[0] for p in points],[p[1] for p in points]) - pylab.gca().add_patch(patches.Polygon(points,closed=True,fill=True)) - pylab.grid() - pylab.show() - - elif len(self.symbols)==3: - from mpl_toolkits.mplot3d import Axes3D - from mpl_toolkits.mplot3d.art3d import Poly3DCollection - faces = self.faces() + from matplotlib.axes import Axes + from matplotlib.patches import Polygon + vertices = self._sort_polygon_2d(self.vertices()) + xys = [tuple(vertex.values()) for vertex in vertices] + if plot is None: fig = plt.figure() - ax = Axes3D(fig) - for face in faces: - points = [] - vertices = Polyhedron._sort_polygon_3d(face) - for verts in vertices: - pairs=() - for coordinate, point in verts.coordinates(): - pairs = pairs + (float(point),) - points.append(pairs) - collection = Poly3DCollection([points], alpha=0.7) - face_color = [0.5, 0.5, 1] # alternative: matplotlib.colors.rgb2hex([0.5, 0.5, 1]) - collection.set_facecolor(face_color) - ax.add_collection3d(collection) - ax.set_xlabel('X') - ax.set_xlim(0, 5) - ax.set_ylabel('Y') - ax.set_ylim(0, 5) - ax.set_zlabel('Z') - ax.set_zlim(0, 5) - plt.grid() - plt.show() - return points - - @classmethod - def limit(cls, faces, variable, lim): - sym = [] - if variable is 'x': - n = 0 - elif variable is 'y': - n = 1 - elif variable is 'z': - n = 2 - for face in faces: - for vert in face: - coordinates = vert.coordinates() - for point in enumerate(coordinates): - coordinates.get(n) - sym.append(points) - if lim == 0: - value = min(sym) + plot = fig.add_subplot(1, 1, 1) + xs, ys = zip(*xys) + plot.set_xlim(float(min(xs)), float(max(xs))) + plot.set_ylim(float(min(ys)), float(max(ys))) + plot.add_patch(Polygon(xys, closed=True, **kwargs)) + return plot + + def _plot_3d(self, plot=None, **kwargs): + import matplotlib.pyplot as plt + from mpl_toolkits.mplot3d import Axes3D + from mpl_toolkits.mplot3d.art3d import Poly3DCollection + if plot is None: + fig = plt.figure() + axes = Axes3D(fig) + xmin, xmax = float('inf'), float('-inf') + ymin, ymax = float('inf'), float('-inf') + zmin, zmax = float('inf'), float('-inf') else: - value = max(sym) - return value + axes = plot + poly_xyzs = [] + for vertices in self.faces(): + if len(vertices) == 0: + continue + vertices = Polyhedron._sort_polygon_3d(vertices) + vertices.append(vertices[0]) + face_xyzs = [tuple(vertex.values()) for vertex in vertices] + if plot is None: + xs, ys, zs = zip(*face_xyzs) + xmin, xmax = min(xmin, float(min(xs))), max(xmax, float(max(xs))) + ymin, ymax = min(ymin, float(min(ys))), max(ymax, float(max(ys))) + zmin, zmax = min(zmin, float(min(zs))), max(zmax, float(max(zs))) + poly_xyzs.append(face_xyzs) + collection = Poly3DCollection(poly_xyzs, **kwargs) + axes.add_collection3d(collection) + if plot is None: + axes.set_xlim(xmin, xmax) + axes.set_ylim(ymin, ymax) + axes.set_zlim(zmin, zmax) + return axes + + def plot(self, plot=None, **kwargs): + """ + Display 3D plot of set. + """ + if self.dimension == 2: + return self._plot_2d(plot=plot, **kwargs) + elif self.dimension == 3: + return self._plot_3d(plot=plot, **kwargs) + else: + raise ValueError('polyhedron must be 2 or 3-dimensional') + def _polymorphic(func): @functools.wraps(func)