From: Danielle Bolan Date: Tue, 8 Jul 2014 12:30:36 +0000 (+0200) Subject: fixed vertices pushed before adding plot X-Git-Tag: 1.0~136 X-Git-Url: https://scm.cri.ensmp.fr/git/linpy.git/commitdiff_plain/e2a9aaf40294f77a0c7c6fbccf6fd968b6355c90 fixed vertices pushed before adding plot --- diff --git a/pypol/domains.py b/pypol/domains.py index 600049c..44c38e7 100644 --- a/pypol/domains.py +++ b/pypol/domains.py @@ -265,15 +265,29 @@ class Domain: islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols) vertices = libisl.isl_basic_set_compute_vertices(islbset); vertices = islhelper.isl_vertices_vertices(vertices) - points = [] + points = {} + num = 0 + vertices_points = [] + symbols = list(self.symbols) for vertex in vertices: - expr = libisl.isl_vertex_get_expr(vertex); + expr = libisl.isl_vertex_get_expr(vertex); #make vertices a bset if islhelper.isl_version < '0.13': - #pass bset from expr to points to get verticies - exp = Polyhedron._fromislbasicset(expr, self.symbols) - points.append(exp.points()) + constraints = islhelper.isl_basic_set_constraints(expr) #get bset constraints + for dim in symbols: + index = symbols.index(dim) + for c in constraints: #for each constraint + constant = libisl.isl_constraint_get_constant_val(c) #get contant value + constant = islhelper.isl_val_to_int(constant) + coefficient = libisl.isl_constraint_get_coefficient_val(c,libisl.isl_dim_set, index) + coefficient = islhelper.isl_val_to_int(coefficient) #get coefficient + if coefficient != 0: + num = Fraction(constant, coefficient) + points.update({dim:num}) + vertices_points.append(points) + print(points) + else: - # horrible hack, find a cleaner solution + points = [] string = islhelper.isl_multi_aff_to_str(expr) matches = self._RE_COORDINATE.finditer(string) point = {} @@ -284,8 +298,8 @@ class Domain: coordinate = Fraction(numerator, denominator) point[symbol] = coordinate points.append(point) - return points - + return vertices_points + def points(self): if not self.isbounded(): raise ValueError('domain must be bounded')