5 from . import islhelper
7 from .islhelper
import mainctx
, libisl
, isl_set_basic_sets
8 from .linexprs
import Expression
17 @functools.total_ordering
26 def __new__(cls
, *polyhedra
):
27 from .polyhedra
import Polyhedron
28 if len(polyhedra
) == 1:
29 polyhedron
= polyhedra
[0]
30 if isinstance(polyhedron
, str):
31 return cls
.fromstring(polyhedron
)
32 elif isinstance(polyhedron
, Polyhedron
):
35 raise TypeError('argument must be a string '
36 'or a Polyhedron instance')
38 for polyhedron
in polyhedra
:
39 if not isinstance(polyhedron
, Polyhedron
):
40 raise TypeError('arguments must be Polyhedron instances')
41 symbols
= cls
._xsymbols
(polyhedra
)
42 islset
= cls
._toislset
(polyhedra
, symbols
)
43 return cls
._fromislset
(islset
, symbols
)
46 def _xsymbols(cls
, iterator
):
48 Return the ordered tuple of symbols present in iterator.
52 symbols
.update(item
.symbols
)
53 return tuple(sorted(symbols
))
57 return self
._polyhedra
65 return self
._dimension
68 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
69 islset
= libisl
.isl_set_make_disjoint(mainctx
, islset
)
70 return self
._fromislset
(islset
, self
.symbols
)
73 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
74 empty
= bool(libisl
.isl_set_is_empty(islset
))
75 libisl
.isl_set_free(islset
)
79 return not self
.isempty()
82 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
83 universe
= bool(libisl
.isl_set_plain_is_universe(islset
))
84 libisl
.isl_set_free(islset
)
88 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
89 bounded
= bool(libisl
.isl_set_is_bounded(islset
))
90 libisl
.isl_set_free(islset
)
93 def __eq__(self
, other
):
94 symbols
= self
._xsymbols
([self
, other
])
95 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
96 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
97 equal
= bool(libisl
.isl_set_is_equal(islset1
, islset2
))
98 libisl
.isl_set_free(islset1
)
99 libisl
.isl_set_free(islset2
)
102 def isdisjoint(self
, other
):
103 symbols
= self
._xsymbols
([self
, other
])
104 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
105 islset2
= self
._toislset
(other
.polyhedra
, symbols
)
106 equal
= bool(libisl
.isl_set_is_disjoint(islset1
, islset2
))
107 libisl
.isl_set_free(islset1
)
108 libisl
.isl_set_free(islset2
)
111 def issubset(self
, other
):
112 symbols
= self
._xsymbols
([self
, other
])
113 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
114 islset2
= self
._toislset
(other
.polyhedra
, symbols
)
115 equal
= bool(libisl
.isl_set_is_subset(islset1
, islset2
))
116 libisl
.isl_set_free(islset1
)
117 libisl
.isl_set_free(islset2
)
120 def __le__(self
, other
):
121 return self
.issubset(other
)
123 def __lt__(self
, other
):
124 symbols
= self
._xsymbols
([self
, other
])
125 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
126 islset2
= self
._toislset
(other
.polyhedra
, symbols
)
127 equal
= bool(libisl
.isl_set_is_strict_subset(islset1
, islset2
))
128 libisl
.isl_set_free(islset1
)
129 libisl
.isl_set_free(islset2
)
132 def complement(self
):
133 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
134 islset
= libisl
.isl_set_complement(islset
)
135 return self
._fromislset
(islset
, self
.symbols
)
137 def __invert__(self
):
138 return self
.complement()
141 # see isl_set_coalesce, isl_set_detect_equalities,
142 # isl_set_remove_redundancies
143 # which ones? in which order?
144 raise NotImplementedError
146 def polyhedral_hull(self
):
147 # several types of hull are available
148 # polyhedral seems to be the more appropriate, to be checked
149 from .polyhedra
import Polyhedron
150 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
151 islbset
= libisl
.isl_set_polyhedral_hull(islset
)
152 return Polyhedron
._fromislbasicset
(islbset
, self
.symbols
)
154 def project(self
, symbols
):
155 # not sure what isl_set_project_out actually does…
156 # use isl_set_drop_constraints_involving_dims instead?
157 raise NotImplementedError
160 from .polyhedra
import Polyhedron
161 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
162 islbset
= libisl
.isl_set_sample(islset
)
163 return Polyhedron
._fromislbasicset
(islbset
, self
.symbols
)
165 def intersection(self
, *others
):
168 symbols
= self
._xsymbols
((self
,) + others
)
169 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
171 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
172 islset1
= libisl
.isl_set_intersect(islset1
, islset2
)
173 return self
._fromislset
(islset1
, symbols
)
175 def __and__(self
, other
):
176 return self
.intersection(other
)
178 def union(self
, *others
):
181 symbols
= self
._xsymbols
((self
,) + others
)
182 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
184 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
185 islset1
= libisl
.isl_set_union(islset1
, islset2
)
186 return self
._fromislset
(islset1
, symbols
)
188 def __or__(self
, other
):
189 return self
.union(other
)
191 def __add__(self
, other
):
192 return self
.union(other
)
194 def difference(self
, other
):
195 symbols
= self
._xsymbols
([self
, other
])
196 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
197 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
198 islset
= libisl
.isl_set_subtract(islset1
, islset2
)
199 return self
._fromislset
(islset
, symbols
)
201 def __sub__(self
, other
):
202 return self
.difference(other
)
205 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
206 islset
= libisl
.isl_set_lexmin(islset
)
207 return self
._fromislset
(islset
, self
.symbols
)
210 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
211 islset
= libisl
.isl_set_lexmax(islset
)
212 return self
._fromislset
(islset
, self
.symbols
)
215 def _fromislset(cls
, islset
, symbols
):
216 from .polyhedra
import Polyhedron
217 islset
= libisl
.isl_set_remove_divs(islset
)
218 islbsets
= isl_set_basic_sets(islset
)
219 libisl
.isl_set_free(islset
)
221 for islbset
in islbsets
:
222 polyhedron
= Polyhedron
._fromislbasicset
(islbset
, symbols
)
223 polyhedra
.append(polyhedron
)
224 if len(polyhedra
) == 0:
225 from .polyhedra
import Empty
227 elif len(polyhedra
) == 1:
230 self
= object().__new
__(Domain
)
231 self
._polyhedra
= tuple(polyhedra
)
232 self
._symbols
= cls
._xsymbols
(polyhedra
)
233 self
._dimension
= len(self
._symbols
)
236 def _toislset(cls
, polyhedra
, symbols
):
237 polyhedron
= polyhedra
[0]
238 islbset
= polyhedron
._toislbasicset
(polyhedron
.equalities
,
239 polyhedron
.inequalities
, symbols
)
240 islset1
= libisl
.isl_set_from_basic_set(islbset
)
241 for polyhedron
in polyhedra
[1:]:
242 islbset
= polyhedron
._toislbasicset
(polyhedron
.equalities
,
243 polyhedron
.inequalities
, symbols
)
244 islset2
= libisl
.isl_set_from_basic_set(islbset
)
245 islset1
= libisl
.isl_set_union(islset1
, islset2
)
249 def _fromast(cls
, node
):
250 from .polyhedra
import Polyhedron
251 if isinstance(node
, ast
.Module
) and len(node
.body
) == 1:
252 return cls
._fromast
(node
.body
[0])
253 elif isinstance(node
, ast
.Expr
):
254 return cls
._fromast
(node
.value
)
255 elif isinstance(node
, ast
.UnaryOp
):
256 domain
= cls
._fromast
(node
.operand
)
257 if isinstance(node
.operand
, ast
.invert
):
259 elif isinstance(node
, ast
.BinOp
):
260 domain1
= cls
._fromast
(node
.left
)
261 domain2
= cls
._fromast
(node
.right
)
262 if isinstance(node
.op
, ast
.BitAnd
):
263 return And(domain1
, domain2
)
264 elif isinstance(node
.op
, ast
.BitOr
):
265 return Or(domain1
, domain2
)
266 elif isinstance(node
, ast
.Compare
):
269 left
= Expression
._fromast
(node
.left
)
270 for i
in range(len(node
.ops
)):
272 right
= Expression
._fromast
(node
.comparators
[i
])
273 if isinstance(op
, ast
.Lt
):
274 inequalities
.append(right
- left
- 1)
275 elif isinstance(op
, ast
.LtE
):
276 inequalities
.append(right
- left
)
277 elif isinstance(op
, ast
.Eq
):
278 equalities
.append(left
- right
)
279 elif isinstance(op
, ast
.GtE
):
280 inequalities
.append(left
- right
)
281 elif isinstance(op
, ast
.Gt
):
282 inequalities
.append(left
- right
- 1)
287 return Polyhedron(equalities
, inequalities
)
288 raise SyntaxError('invalid syntax')
290 _RE_BRACES
= re
.compile(r
'^\{\s*|\s*\}$')
291 _RE_EQ
= re
.compile(r
'([^<=>])=([^<=>])')
292 _RE_AND
= re
.compile(r
'\band\b|,|&&|/\\|∧|∩')
293 _RE_OR
= re
.compile(r
'\bor\b|;|\|\||\\/|∨|∪')
294 _RE_NOT
= re
.compile(r
'\bnot\b|!|¬')
295 _RE_NUM_VAR
= Expression
._RE
_NUM
_VAR
296 _RE_OPERATORS
= re
.compile(r
'(&|\||~)')
299 def fromstring(cls
, string
):
300 # remove curly brackets
301 string
= cls
._RE
_BRACES
.sub(r
'', string
)
302 # replace '=' by '=='
303 string
= cls
._RE
_EQ
.sub(r
'\1==\2', string
)
304 # replace 'and', 'or', 'not'
305 string
= cls
._RE
_AND
.sub(r
' & ', string
)
306 string
= cls
._RE
_OR
.sub(r
' | ', string
)
307 string
= cls
._RE
_NOT
.sub(r
' ~', string
)
308 # add implicit multiplication operators, e.g. '5x' -> '5*x'
309 string
= cls
._RE
_NUM
_VAR
.sub(r
'\1*\2', string
)
310 # add parentheses to force precedence
311 tokens
= cls
._RE
_OPERATORS
.split(string
)
312 for i
, token
in enumerate(tokens
):
314 token
= '({})'.format(token
)
316 string
= ''.join(tokens
)
317 tree
= ast
.parse(string
, 'eval')
318 return cls
._fromast
(tree
)
321 assert len(self
.polyhedra
) >= 2
322 strings
= [repr(polyhedron
) for polyhedron
in self
.polyhedra
]
323 return 'Or({})'.format(', '.join(strings
))
326 def fromsympy(cls
, expr
):
327 raise NotImplementedError
330 raise NotImplementedError
334 if len(domains
) == 0:
335 from .polyhedra
import Universe
338 return domains
[0].intersection(*domains
[1:])
341 if len(domains
) == 0:
342 from .polyhedra
import Empty
345 return domains
[0].union(*domains
[1:])