This class implements linear expressions.
"""
+ __slots__ = (
+ '_coefficients',
+ '_constant',
+ '_symbols',
+ '_dimension',
+ )
+
def __new__(cls, coefficients=None, constant=0):
if isinstance(coefficients, str):
if constant:
@classmethod
def _fromast(cls, node):
- if isinstance(node, ast.Module):
- assert len(node.body) == 1
+ if isinstance(node, ast.Module) and len(node.body) == 1:
return cls._fromast(node.body[0])
elif isinstance(node, ast.Expr):
return cls._fromast(node.value)
return Symbol(node.id)
elif isinstance(node, ast.Num):
return Constant(node.n)
- elif isinstance(node, ast.UnaryOp):
- if isinstance(node.op, ast.USub):
- return -cls._fromast(node.operand)
+ elif isinstance(node, ast.UnaryOp) and isinstance(node.op, ast.USub):
+ return -cls._fromast(node.operand)
elif isinstance(node, ast.BinOp):
left = cls._fromast(node.left)
right = cls._fromast(node.right)
@classmethod
def fromstring(cls, string):
- string = re.sub(r'(\d+|\))\s*([^\W\d_]\w*|\()',
- lambda m: '{}*{}'.format(m.group(1), m.group(2)),
- string)
+ string = re.sub(r'(\d+|\))\s*([^\W\d_]\w*|\()', r'\1*\2', string)
tree = ast.parse(string, 'eval')
return cls._fromast(tree)
class Symbol(Expression):
+ __slots__ = Expression.__slots__ + (
+ '_name',
+ )
+
def __new__(cls, name):
if isinstance(name, Symbol):
name = name.name
This class implements polyhedrons.
"""
+ __slots__ = (
+ '_equalities',
+ '_inequalities',
+ '_constraints',
+ '_symbols',
+ )
+
def __new__(cls, equalities=None, inequalities=None):
if isinstance(equalities, str):
if inequalities is not None:
self._symbols = tuple(sorted(self._symbols))
return self
+ @classmethod
+ def _fromast(cls, node):
+ if isinstance(node, ast.Module) and len(node.body) == 1:
+ return cls._fromast(node.body[0])
+ elif isinstance(node, ast.Expr):
+ return cls._fromast(node.value)
+ elif isinstance(node, ast.BinOp) and isinstance(node.op, ast.BitAnd):
+ equalities1, inequalities1 = cls._fromast(node.left)
+ equalities2, inequalities2 = cls._fromast(node.right)
+ equalities = equalities1 + equalities2
+ inequalities = inequalities1 + inequalities2
+ return equalities, inequalities
+ elif isinstance(node, ast.Compare):
+ equalities = []
+ inequalities = []
+ left = Expression._fromast(node.left)
+ for i in range(len(node.ops)):
+ op = node.ops[i]
+ right = Expression._fromast(node.comparators[i])
+ if isinstance(op, ast.Lt):
+ inequalities.append(right - left - 1)
+ elif isinstance(op, ast.LtE):
+ inequalities.append(right - left)
+ elif isinstance(op, ast.Eq):
+ equalities.append(left - right)
+ elif isinstance(op, ast.GtE):
+ inequalities.append(left - right)
+ elif isinstance(op, ast.Gt):
+ inequalities.append(left - right - 1)
+ else:
+ break
+ left = right
+ else:
+ return equalities, inequalities
+ raise SyntaxError('invalid syntax')
+
@classmethod
def fromstring(cls, string):
- raise NotImplementedError
+ string = string.strip()
+ string = re.sub(r'^\{\s*|\s*\}$', '', string)
+ string = re.sub(r'([^<=>])=([^<=>])', r'\1==\2', string)
+ string = re.sub(r'(\d+|\))\s*([^\W\d_]\w*|\()', r'\1*\2', string)
+ tokens = re.split(r',|;|and|&&|/\\|∧', string, flags=re.I)
+ tokens = ['({})'.format(token) for token in tokens]
+ string = ' & '.join(tokens)
+ tree = ast.parse(string, 'eval')
+ equalities, inequalities = cls._fromast(tree)
+ return cls(equalities, inequalities)
@property
def equalities(self):
dim = symbols.index(symbol)
cin = libisl.isl_constraint_set_coefficient_val(cin, libisl.isl_dim_set, dim, val)
if inequality.constant != 0:
- val = str(ineq.constant).encode()
+ val = str(inequality.constant).encode()
val = libisl.isl_val_read_from_str(_main_ctx, val)
cin = libisl.isl_constraint_set_constant_val(cin, val)
bset = libisl.isl_basic_set_add_constraint(bset, cin)
{ [i0, i1] : 2i1 >= -2 - i0 } '''
Empty = eq(0,1)
+
Universe = Polyhedron()
+
if __name__ == '__main__':
- e1 = Expression('2a + 2b + 1')
- p1 = Polyhedron(equalities=[e1]) # empty
- e2 = Expression('3x + 2y + 3')
- p2 = Polyhedron(equalities=[e2]) # not empty
+ p1 = Polyhedron('2a + 2b + 1 == 0') # empty
print(p1._toisl())
+ p2 = Polyhedron('3x + 2y + 3 == 0') # not empty
print(p2._toisl())