#!/usr/bin/env python3
+
+# This is an implementation of the algorithm described in
#
-# Copyright 2014 MINES ParisTech
-#
-# This file is part of LinPy.
-#
-# LinPy is free software: you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation, either version 3 of the License, or
-# (at your option) any later version.
-#
-# LinPy is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
+# [ACI10] C. Ancourt, F. Coelho and F. Irigoin, A modular static analysis
+# approach to affine loop invariants detection (2010), pp. 3 - 16, NSAD 2010.
#
-# You should have received a copy of the GNU General Public License
-# along with LinPy. If not, see <http://www.gnu.org/licenses/>.
+# to compute the transitive closure of an affine transformer. A refined version
+# of this algorithm is implemented in PIPS.
from linpy import *
if __name__ == '__main__':
- i, iprime, j, jprime = symbols("i i' j j'")
- transformer = Transformer(Eq(iprime, i + 2) & Eq(jprime, j + 1),
- [i, j], [iprime, jprime])
+ i0, i, j0, j = symbols('i0 i j0 j')
+ transformer = Transformer(Eq(i, i0 + 2) & Eq(j, j0 + 1),
+ [i0, j0], [i, j])
print('T =', transformer.polyhedron)
print('T* =', transformer.star().polyhedron)