from . import islhelper
from .islhelper import mainctx, libisl, isl_set_basic_sets
-from .linexprs import Expression
+from .linexprs import Expression, Symbol
__all__ = [
symbols = set()
for item in iterator:
symbols.update(item.symbols)
- return tuple(sorted(symbols))
+ return tuple(sorted(symbols, key=Symbol.sortkey))
@property
def polyhedra(self):
return self.complement()
def simplify(self):
- # see isl_set_coalesce, isl_set_detect_equalities,
- # isl_set_remove_redundancies
- # which ones? in which order?
- raise NotImplementedError
+ #does not change anything in any of the examples
+ #isl seems to do this naturally
+ islset = self._toislset(self.polyhedra, self.symbols)
+ islset = libisl.isl_set_remove_redundancies(islset)
+ return self._fromislset(islset, self.symbols)
def polyhedral_hull(self):
# several types of hull are available
islbset = libisl.isl_set_polyhedral_hull(islset)
return Polyhedron._fromislbasicset(islbset, self.symbols)
- def project(self, symbols):
- # not sure what isl_set_project_out actually does…
- # use isl_set_drop_constraints_involving_dims instead?
- raise NotImplementedError
+ def project_out(self, dims):
+ # use to remove certain variables
+ islset = self._toislset(self.polyhedra, self.symbols)
+ n = 0
+ for index, symbol in reversed(list(enumerate(self.symbols))):
+ if symbol in dims:
+ n += 1
+ elif n > 0:
+ islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, index + 1, n)
+ n = 0
+ if n > 0:
+ islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, 0, n)
+ dims = [symbol for symbol in self.symbols if symbol not in dims]
+ return Domain._fromislset(islset, dims)
def sample(self):
from .polyhedra import Polyhedron
islset = self._toislset(self.polyhedra, self.symbols)
islset = libisl.isl_set_lexmax(islset)
return self._fromislset(islset, self.symbols)
-
+
+ def num_parameters(self):
+ #could be useful with large, complicated polyhedrons
+ islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols)
+ num = libisl.isl_basic_set_dim(islbset, libisl.isl_dim_set)
+ return num
+
+ def involves_dims(self, dims):
+ #could be useful with large, complicated polyhedrons
+ islset = self._toislset(self.polyhedra, self.symbols)
+ dims = sorted(dims)
+ symbols = sorted(list(self.symbols))
+ n = 0
+ if len(dims)>0:
+ for dim in dims:
+ if dim in symbols:
+ first = symbols.index(dims[0])
+ n +=1
+ else:
+ first = 0
+ else:
+ return False
+ value = bool(libisl.isl_set_involves_dims(islset, libisl.isl_dim_set, first, n))
+ libisl.isl_set_free(islset)
+ return value
+
+ def vertices(self):
+ if self.isbounded():
+ islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols)
+ vertices = libisl.isl_basic_set_compute_vertices(islbset);
+ vertexes = islhelper.isl_vertices_vertices(vertices)
+ #vertex = libisl.isl_vertices_get_n_vertices(vertices)
+ for verts in vertexes:
+ expr = libisl.isl_vertex_get_expr(verts);
+ this = islhelper.isl_set_to_str(expr)
+ print(this)
+ else:
+ raise TypeError('set must be bounded')
+ return string
+
+ def points(self):
+ bounds = {}
+ coordinates = []
+ symbols = self.symbols
+ if self.isbounded():
+ islset = self._toislset(self.polyhedra, self.symbols)
+ points = islhelper.isl_set_points(islset)
+ for sym in symbols:
+ for point in points:
+ coordinate = libisl.isl_point_get_coordinate_val(point, libisl.isl_dim_set, symbols.index(sym))
+ coordinate = islhelper.isl_val_to_int(coordinate)
+ coordinates.append(coordinate)
+ else:
+ raise TypeError('set must be bounded')
+ return coordinates
+
@classmethod
def _fromislset(cls, islset, symbols):
from .polyhedra import Polyhedron
return Polyhedron(equalities, inequalities)
raise SyntaxError('invalid syntax')
+ _RE_BRACES = re.compile(r'^\{\s*|\s*\}$')
+ _RE_EQ = re.compile(r'([^<=>])=([^<=>])')
+ _RE_AND = re.compile(r'\band\b|,|&&|/\\|∧|∩')
+ _RE_OR = re.compile(r'\bor\b|;|\|\||\\/|∨|∪')
+ _RE_NOT = re.compile(r'\bnot\b|!|¬')
+ _RE_NUM_VAR = Expression._RE_NUM_VAR
+ _RE_OPERATORS = re.compile(r'(&|\||~)')
+
@classmethod
def fromstring(cls, string):
- # remove brackets
- string = re.sub(r'^\{\s*|\s*\}$', '', string)
+ # remove curly brackets
+ string = cls._RE_BRACES.sub(r'', string)
# replace '=' by '=='
- string = re.sub(r'([^<=>])=([^<=>])', r'\1==\2', string)
+ string = cls._RE_EQ.sub(r'\1==\2', string)
# replace 'and', 'or', 'not'
- string = re.sub(r'\band\b|,|&&|/\\|∧|∩', r' & ', string)
- string = re.sub(r'\bor\b|;|\|\||\\/|∨|∪', r' | ', string)
- string = re.sub(r'\bnot\b|!|¬', r' ~', string)
- tokens = re.split(r'(&|\||~)', string)
+ string = cls._RE_AND.sub(r' & ', string)
+ string = cls._RE_OR.sub(r' | ', string)
+ string = cls._RE_NOT.sub(r' ~', string)
+ # add implicit multiplication operators, e.g. '5x' -> '5*x'
+ string = cls._RE_NUM_VAR.sub(r'\1*\2', string)
+ # add parentheses to force precedence
+ tokens = cls._RE_OPERATORS.split(string)
for i, token in enumerate(tokens):
if i % 2 == 0:
- # add implicit multiplication operators, e.g. '5x' -> '5*x'
- token = re.sub(r'(\d+|\))\s*([^\W\d_]\w*|\()', r'\1*\2', token)
token = '({})'.format(token)
tokens[i] = token
string = ''.join(tokens)
- tree = ast.parse(string)
+ tree = ast.parse(string, 'eval')
return cls._fromast(tree)
def __repr__(self):
@classmethod
def fromsympy(cls, expr):
- raise NotImplementedError
+ import sympy
+ from .polyhedra import Lt, Le, Eq, Ne, Ge, Gt
+ funcmap = {
+ sympy.And: And, sympy.Or: Or, sympy.Not: Not,
+ sympy.Lt: Lt, sympy.Le: Le,
+ sympy.Eq: Eq, sympy.Ne: Ne,
+ sympy.Ge: Ge, sympy.Gt: Gt,
+ }
+ if expr.func in funcmap:
+ args = [Domain.fromsympy(arg) for arg in expr.args]
+ return funcmap[expr.func](*args)
+ elif isinstance(expr, sympy.Expr):
+ return Expression.fromsympy(expr)
+ raise ValueError('non-domain expression: {!r}'.format(expr))
def tosympy(self):
- raise NotImplementedError
+ import sympy
+ polyhedra = [polyhedron.tosympy() for polyhedron in polyhedra]
+ return sympy.Or(*polyhedra)
def And(*domains):