from pypol import *
-x, y = symbols('x y')
+a, x, y, z = symbols('a x y z')
sq1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2)
sq2 = Le(2, x) & Le(x, 4) & Le(2, y) & Le(y, 4)
+sq3 = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3)
+sq4 = Le(1, x) & Le(x, 2) & Le(1, y) & Le(y, 2)
+sq5 = Le(1, x) & Le(x, 2) & Le(1, y)
+sq6 = Le(1, x) & Le(x, 2) & Le(1, y) & Eq(y, 3)
+sq7 = Le(0, x) & Le(x, 2) & Le(0, y) & Eq(z, 2) & Le(a, 3)
+u = Polyhedron([])
+x = sq1 - sq2
-print('sq1 =', sq1)
-print('sq2 =', sq2)
+print('sq1 =', sq1) #print correct square
+print('sq2 =', sq2) #print correct square
+print('sq3 =', sq3) #print correct square
+print('sq4 =', sq4) #print correct square
+print('u =', u) #print correct square
print()
-print('¬sq1 =', ~sq1)
+print('¬sq1 =', ~sq1) #test complement
print()
-print('sq1 - sq2 =', sq1 - sq2)
-print('sq1 - sq2 =', Polyhedron(sq1 - sq2))
+print('sq1 + sq1 =', sq1 + sq2) #test addition
+print('sq1 + sq2 =', Polyhedron(sq1 + sq2)) #test addition
print()
-print('sq1 ∩ sq2 =', sq1 & sq2)
-print('sq1 ∪ sq2 =', sq1 | sq2)
+print('u + u =', u + u)#test addition
+print('u - u =', u - u) #test subtraction
print()
-print('sq1 ⊔ sq2 =', Polyhedron(sq1 | sq2))
+print('sq2 - sq1 =', sq2 - sq1) #test subtraction
+print('sq2 - sq1 =', Polyhedron(sq2 - sq1)) #test subtraction
+print('sq1 - sq1 =', Polyhedron(sq1 - sq1)) #test subtraction
+print()
+print('sq1 ∩ sq2 =', sq1 & sq2) #test intersection
+print('sq1 ∪ sq2 =', sq1 | sq2) #test union
+print()
+print('sq1 ⊔ sq2 =', Polyhedron(sq1 | sq2)) # test convex union
+print()
+print('check if sq1 and sq2 disjoint:', sq1.isdisjoint(sq2)) #should return false
+print()
+print('sq1 disjoint:', sq1.disjoint()) #make disjoint
+print('sq2 disjoint:', sq2.disjoint()) #make disjoint
+print()
+print('is square 1 universe?:', sq1.isuniverse()) #test if square is universe
+print('is u universe?:', u.isuniverse()) #test if square is universe
+print()
+print('is sq1 a subset of sq2?:', sq1.issubset(sq2)) #test issubset()
+print('is sq4 less than sq3?:', sq4.__lt__(sq3)) # test lt(), must be a strict subset
+print()
+print('lexographic min of sq1:', sq1.lexmin()) #test lexmin()
+print('lexographic max of sq1:', sq1.lexmax()) #test lexmin()
+print()
+print('lexographic min of sq2:', sq2.lexmin()) #test lexmax()
+print('lexographic max of sq2:', sq2.lexmax()) #test lexmax()
+print()
+print('Polyhedral hull of sq1 + sq2 is:', x.polyhedral_hull()) #test polyhedral hull, returns same
+ #value as Polyhedron(sq1 + sq2)
+print()
+print('is sq1 bounded?', sq1.isbounded()) #unbounded should return True
+print('is sq5 bounded?', sq5.isbounded()) #unbounded should return False
+print()
+print('sq6:', sq6)
+print('sq6 simplified:', sq6.sample())
+print()
+#print(u.drop_dims(' '))
+print('sq7 with out constraints involving y and a', sq7.drop_dims('y a')) #drops dims that are passed