__all__ = [
'Expression',
- 'Symbol', 'symbols',
- 'Constant',
+ 'Symbol', 'symbols', 'Dummy',
+ 'Rational',
]
if isinstance(right, Expression):
return func(left, right)
elif isinstance(right, numbers.Rational):
- right = Constant(right)
+ right = Rational(right)
return func(left, right)
return NotImplemented
return wrapper
raise TypeError('too many arguments')
return Expression.fromstring(coefficients)
if coefficients is None:
- return Constant(constant)
+ return Rational(constant)
if isinstance(coefficients, dict):
coefficients = coefficients.items()
for symbol, coefficient in coefficients:
coefficients = [(symbol, coefficient)
for symbol, coefficient in coefficients if coefficient != 0]
if len(coefficients) == 0:
- return Constant(constant)
+ return Rational(constant)
if len(coefficients) == 1 and constant == 0:
symbol, coefficient = coefficients[0]
if coefficient == 1:
self = object().__new__(cls)
self._coefficients = OrderedDict()
for symbol, coefficient in sorted(coefficients,
- key=lambda item: item[0].name):
- if isinstance(coefficient, Constant):
+ key=lambda item: item[0].sortkey()):
+ if isinstance(coefficient, Rational):
coefficient = coefficient.constant
if not isinstance(coefficient, numbers.Rational):
raise TypeError('coefficients must be rational numbers '
- 'or Constant instances')
+ 'or Rational instances')
self._coefficients[symbol] = coefficient
- if isinstance(constant, Constant):
+ if isinstance(constant, Rational):
constant = constant.constant
if not isinstance(constant, numbers.Rational):
raise TypeError('constant must be a rational number '
- 'or a Constant instance')
+ 'or a Rational instance')
self._constant = constant
self._symbols = tuple(self._coefficients)
self._dimension = len(self._symbols)
@_polymorphic
def __add__(self, other):
- coefficients = defaultdict(Constant, self.coefficients())
+ coefficients = defaultdict(Rational, self.coefficients())
for symbol, coefficient in other.coefficients():
coefficients[symbol] += coefficient
constant = self.constant + other.constant
@_polymorphic
def __sub__(self, other):
- coefficients = defaultdict(Constant, self.coefficients())
+ coefficients = defaultdict(Rational, self.coefficients())
for symbol, coefficient in other.coefficients():
coefficients[symbol] -= coefficient
constant = self.constant - other.constant
if other.isconstant():
coefficients = dict(self.coefficients())
for symbol in coefficients:
- coefficients[symbol] = Constant(coefficients[symbol], other.constant)
- constant = Constant(self.constant, other.constant)
+ coefficients[symbol] = Rational(coefficients[symbol], other.constant)
+ constant = Rational(self.constant, other.constant)
return Expression(coefficients, constant)
if isinstance(other, Expression):
raise ValueError('non-linear expression: '
def __rtruediv__(self, other):
if isinstance(other, self):
if self.isconstant():
- return Constant(other, self.constant)
+ return Rational(other, self.constant)
else:
raise ValueError('non-linear expression: '
'{} / {}'.format(other._parenstr(), self._parenstr()))
elif isinstance(node, ast.Name):
return Symbol(node.id)
elif isinstance(node, ast.Num):
- return Constant(node.n)
+ return Rational(node.n)
elif isinstance(node, ast.UnaryOp) and isinstance(node.op, ast.USub):
return -cls._fromast(node.operand)
elif isinstance(node, ast.BinOp):
return self._name
def __hash__(self):
- return hash(self._name)
+ return hash(self.sortkey())
def coefficient(self, symbol):
if not isinstance(symbol, Symbol):
def dimension(self):
return 1
+ def sortkey(self):
+ return self.name,
+
def issymbol(self):
return True
yield 1
def __eq__(self, other):
- return isinstance(other, Symbol) and self.name == other.name
+ return not isinstance(other, Dummy) and isinstance(other, Symbol) \
+ and self.name == other.name
+
+ def asdummy(self):
+ return Dummy(self.name)
@classmethod
def _fromast(cls, node):
return tuple(Symbol(name) for name in names)
-class Constant(Expression):
+class Dummy(Symbol):
+
+ __slots__ = (
+ '_name',
+ '_index',
+ )
+
+ _count = 0
+
+ def __new__(cls, name=None):
+ if name is None:
+ name = 'Dummy_{}'.format(Dummy._count)
+ self = object().__new__(cls)
+ self._name = name.strip()
+ self._index = Dummy._count
+ Dummy._count += 1
+ return self
+
+ def __hash__(self):
+ return hash(self.sortkey())
+
+ def sortkey(self):
+ return self._name, self._index
+
+ def __eq__(self, other):
+ return isinstance(other, Dummy) and self._index == other._index
+
+
+class Rational(Expression):
__slots__ = (
'_constant',
def __new__(cls, numerator=0, denominator=None):
self = object().__new__(cls)
- if denominator is None and isinstance(numerator, Constant):
+ if denominator is None and isinstance(numerator, Rational):
self._constant = numerator.constant
else:
self._constant = Fraction(numerator, denominator)
@_polymorphic
def __eq__(self, other):
- return isinstance(other, Constant) and self.constant == other.constant
+ return isinstance(other, Rational) and self.constant == other.constant
def __bool__(self):
return self.constant != 0
def fromstring(cls, string):
if not isinstance(string, str):
raise TypeError('string must be a string instance')
- return Constant(Fraction(string))
+ return Rational(Fraction(string))
@classmethod
def fromsympy(cls, expr):
import sympy
if isinstance(expr, sympy.Rational):
- return Constant(expr.p, expr.q)
+ return Rational(expr.p, expr.q)
elif isinstance(expr, numbers.Rational):
- return Constant(expr)
+ return Rational(expr)
else:
raise TypeError('expr must be a sympy.Rational instance')