Rename pypol into LinPy
[linpy.git] / pypol / polyhedra.py
diff --git a/pypol/polyhedra.py b/pypol/polyhedra.py
deleted file mode 100644 (file)
index a5048d1..0000000
+++ /dev/null
@@ -1,417 +0,0 @@
-import functools
-import math
-import numbers
-
-from . import islhelper
-
-from .islhelper import mainctx, libisl
-from .geometry import GeometricObject, Point, Vector
-from .linexprs import Expression, Symbol, Rational
-from .domains import Domain
-
-
-__all__ = [
-    'Polyhedron',
-    'Lt', 'Le', 'Eq', 'Ne', 'Ge', 'Gt',
-    'Empty', 'Universe',
-]
-
-
-class Polyhedron(Domain):
-
-    __slots__ = (
-        '_equalities',
-        '_inequalities',
-        '_constraints',
-        '_symbols',
-        '_dimension',
-    )
-
-    def __new__(cls, equalities=None, inequalities=None):
-        if isinstance(equalities, str):
-            if inequalities is not None:
-                raise TypeError('too many arguments')
-            return cls.fromstring(equalities)
-        elif isinstance(equalities, GeometricObject):
-            if inequalities is not None:
-                raise TypeError('too many arguments')
-            return equalities.aspolyhedron()
-        if equalities is None:
-            equalities = []
-        else:
-            for i, equality in enumerate(equalities):
-                if not isinstance(equality, Expression):
-                    raise TypeError('equalities must be linear expressions')
-                equalities[i] = equality.scaleint()
-        if inequalities is None:
-            inequalities = []
-        else:
-            for i, inequality in enumerate(inequalities):
-                if not isinstance(inequality, Expression):
-                    raise TypeError('inequalities must be linear expressions')
-                inequalities[i] = inequality.scaleint()
-        symbols = cls._xsymbols(equalities + inequalities)
-        islbset = cls._toislbasicset(equalities, inequalities, symbols)
-        return cls._fromislbasicset(islbset, symbols)
-
-    @property
-    def equalities(self):
-        return self._equalities
-
-    @property
-    def inequalities(self):
-        return self._inequalities
-
-    @property
-    def constraints(self):
-        return self._constraints
-
-    @property
-    def polyhedra(self):
-        return self,
-
-    def disjoint(self):
-        """
-        Return this set as disjoint.
-        """
-        return self
-
-    def isuniverse(self):
-        """
-        Return true if this set is the Universe set.
-        """
-        islbset = self._toislbasicset(self.equalities, self.inequalities,
-            self.symbols)
-        universe = bool(libisl.isl_basic_set_is_universe(islbset))
-        libisl.isl_basic_set_free(islbset)
-        return universe
-
-    def aspolyhedron(self):
-        """
-        Return polyhedral hull of this set.
-        """
-        return self
-
-    def __contains__(self, point):
-        if not isinstance(point, Point):
-            raise TypeError('point must be a Point instance')
-        if self.symbols != point.symbols:
-            raise ValueError('arguments must belong to the same space')
-        for equality in self.equalities:
-            if equality.subs(point.coordinates()) != 0:
-                return False
-        for inequality in self.inequalities:
-            if inequality.subs(point.coordinates()) < 0:
-                return False
-        return True
-
-    def subs(self, symbol, expression=None):
-        equalities = [equality.subs(symbol, expression)
-            for equality in self.equalities]
-        inequalities = [inequality.subs(symbol, expression)
-            for inequality in self.inequalities]
-        return Polyhedron(equalities, inequalities)
-
-    @classmethod
-    def _fromislbasicset(cls, islbset, symbols):
-        islconstraints = islhelper.isl_basic_set_constraints(islbset)
-        equalities = []
-        inequalities = []
-        for islconstraint in islconstraints:
-            constant = libisl.isl_constraint_get_constant_val(islconstraint)
-            constant = islhelper.isl_val_to_int(constant)
-            coefficients = {}
-            for index, symbol in enumerate(symbols):
-                coefficient = libisl.isl_constraint_get_coefficient_val(islconstraint,
-                    libisl.isl_dim_set, index)
-                coefficient = islhelper.isl_val_to_int(coefficient)
-                if coefficient != 0:
-                    coefficients[symbol] = coefficient
-            expression = Expression(coefficients, constant)
-            if libisl.isl_constraint_is_equality(islconstraint):
-                equalities.append(expression)
-            else:
-                inequalities.append(expression)
-        libisl.isl_basic_set_free(islbset)
-        self = object().__new__(Polyhedron)
-        self._equalities = tuple(equalities)
-        self._inequalities = tuple(inequalities)
-        self._constraints = tuple(equalities + inequalities)
-        self._symbols = cls._xsymbols(self._constraints)
-        self._dimension = len(self._symbols)
-        return self
-
-    @classmethod
-    def _toislbasicset(cls, equalities, inequalities, symbols):
-        dimension = len(symbols)
-        indices = {symbol: index for index, symbol in enumerate(symbols)}
-        islsp = libisl.isl_space_set_alloc(mainctx, 0, dimension)
-        islbset = libisl.isl_basic_set_universe(libisl.isl_space_copy(islsp))
-        islls = libisl.isl_local_space_from_space(islsp)
-        for equality in equalities:
-            isleq = libisl.isl_equality_alloc(libisl.isl_local_space_copy(islls))
-            for symbol, coefficient in equality.coefficients():
-                islval = str(coefficient).encode()
-                islval = libisl.isl_val_read_from_str(mainctx, islval)
-                index = indices[symbol]
-                isleq = libisl.isl_constraint_set_coefficient_val(isleq,
-                    libisl.isl_dim_set, index, islval)
-            if equality.constant != 0:
-                islval = str(equality.constant).encode()
-                islval = libisl.isl_val_read_from_str(mainctx, islval)
-                isleq = libisl.isl_constraint_set_constant_val(isleq, islval)
-            islbset = libisl.isl_basic_set_add_constraint(islbset, isleq)
-        for inequality in inequalities:
-            islin = libisl.isl_inequality_alloc(libisl.isl_local_space_copy(islls))
-            for symbol, coefficient in inequality.coefficients():
-                islval = str(coefficient).encode()
-                islval = libisl.isl_val_read_from_str(mainctx, islval)
-                index = indices[symbol]
-                islin = libisl.isl_constraint_set_coefficient_val(islin,
-                    libisl.isl_dim_set, index, islval)
-            if inequality.constant != 0:
-                islval = str(inequality.constant).encode()
-                islval = libisl.isl_val_read_from_str(mainctx, islval)
-                islin = libisl.isl_constraint_set_constant_val(islin, islval)
-            islbset = libisl.isl_basic_set_add_constraint(islbset, islin)
-        return islbset
-
-    @classmethod
-    def fromstring(cls, string):
-        domain = Domain.fromstring(string)
-        if not isinstance(domain, Polyhedron):
-            raise ValueError('non-polyhedral expression: {!r}'.format(string))
-        return domain
-
-    def __repr__(self):
-        if self.isempty():
-            return 'Empty'
-        elif self.isuniverse():
-            return 'Universe'
-        else:
-            strings = []
-            for equality in self.equalities:
-                strings.append('Eq({}, 0)'.format(equality))
-            for inequality in self.inequalities:
-                strings.append('Ge({}, 0)'.format(inequality))
-            if len(strings) == 1:
-                return strings[0]
-            else:
-                return 'And({})'.format(', '.join(strings))
-
-    def _repr_latex_(self):
-        if self.isempty():
-            return '$\\emptyset$'
-        elif self.isuniverse():
-            return '$\\Omega$'
-        else:
-            strings = []
-            for equality in self.equalities:
-                strings.append('{} = 0'.format(equality._repr_latex_().strip('$')))
-            for inequality in self.inequalities:
-                strings.append('{} \\ge 0'.format(inequality._repr_latex_().strip('$')))
-            return '${}$'.format(' \\wedge '.join(strings))
-
-    @classmethod
-    def fromsympy(cls, expr):
-        domain = Domain.fromsympy(expr)
-        if not isinstance(domain, Polyhedron):
-            raise ValueError('non-polyhedral expression: {!r}'.format(expr))
-        return domain
-
-    def tosympy(self):
-        import sympy
-        constraints = []
-        for equality in self.equalities:
-            constraints.append(sympy.Eq(equality.tosympy(), 0))
-        for inequality in self.inequalities:
-            constraints.append(sympy.Ge(inequality.tosympy(), 0))
-        return sympy.And(*constraints)
-
-    @classmethod
-    def _polygon_inner_point(cls, points):
-        symbols = points[0].symbols
-        coordinates = {symbol: 0 for symbol in symbols}
-        for point in points:
-            for symbol, coordinate in point.coordinates():
-                coordinates[symbol] += coordinate
-        for symbol in symbols:
-            coordinates[symbol] /= len(points)
-        return Point(coordinates)
-
-    @classmethod
-    def _sort_polygon_2d(cls, points):
-        if len(points) <= 3:
-            return points
-        o = cls._polygon_inner_point(points)
-        angles = {}
-        for m in points:
-            om = Vector(o, m)
-            dx, dy = (coordinate for symbol, coordinate in om.coordinates())
-            angle = math.atan2(dy, dx)
-            angles[m] = angle
-        return sorted(points, key=angles.get)
-
-    @classmethod
-    def _sort_polygon_3d(cls, points):
-        if len(points) <= 3:
-            return points
-        o = cls._polygon_inner_point(points)
-        a = points[0]
-        oa = Vector(o, a)
-        norm_oa = oa.norm()
-        for b in points[1:]:
-            ob = Vector(o, b)
-            u = oa.cross(ob)
-            if not u.isnull():
-                u = u.asunit()
-                break
-        else:
-            raise ValueError('degenerate polygon')
-        angles = {a: 0.}
-        for m in points[1:]:
-            om = Vector(o, m)
-            normprod = norm_oa * om.norm()
-            cosinus = max(oa.dot(om) / normprod, -1.)
-            sinus = u.dot(oa.cross(om)) / normprod
-            angle = math.acos(cosinus)
-            angle = math.copysign(angle, sinus)
-            angles[m] = angle
-        return sorted(points, key=angles.get)
-
-    def faces(self):
-        vertices = self.vertices()
-        faces = []
-        for constraint in self.constraints:
-            face = []
-            for vertex in vertices:
-                if constraint.subs(vertex.coordinates()) == 0:
-                    face.append(vertex)
-            faces.append(face)
-        return faces
-
-    def _plot_2d(self, plot=None, **kwargs):
-        from matplotlib import pylab
-        import matplotlib.pyplot as plt
-        from matplotlib.axes import Axes
-        from matplotlib.patches import Polygon
-        vertices = self._sort_polygon_2d(self.vertices())
-        xys = [tuple(vertex.values()) for vertex in vertices]
-        if plot is None:
-            fig = plt.figure()
-            plot = fig.add_subplot(1, 1, 1)
-            xs, ys = zip(*xys)
-            plot.set_xlim(float(min(xs)), float(max(xs)))
-            plot.set_ylim(float(min(ys)), float(max(ys)))
-        plot.add_patch(Polygon(xys, closed=True, **kwargs))
-        return plot
-
-    def _plot_3d(self, plot=None, **kwargs):
-        import matplotlib.pyplot as plt
-        from mpl_toolkits.mplot3d import Axes3D
-        from mpl_toolkits.mplot3d.art3d import Poly3DCollection
-        if plot is None:
-            fig = plt.figure()
-            axes = Axes3D(fig)
-            xmin, xmax = float('inf'), float('-inf')
-            ymin, ymax = float('inf'), float('-inf')
-            zmin, zmax = float('inf'), float('-inf')
-        else:
-            axes = plot
-        poly_xyzs = []
-        for vertices in self.faces():
-            if len(vertices) == 0:
-                continue
-            vertices = Polyhedron._sort_polygon_3d(vertices)
-            vertices.append(vertices[0])
-            face_xyzs = [tuple(vertex.values()) for vertex in vertices]
-            if plot is None:
-                xs, ys, zs = zip(*face_xyzs)
-                xmin, xmax = min(xmin, float(min(xs))), max(xmax, float(max(xs)))
-                ymin, ymax = min(ymin, float(min(ys))), max(ymax, float(max(ys)))
-                zmin, zmax = min(zmin, float(min(zs))), max(zmax, float(max(zs)))
-            poly_xyzs.append(face_xyzs)
-        collection = Poly3DCollection(poly_xyzs, **kwargs)
-        axes.add_collection3d(collection)
-        if plot is None:
-            axes.set_xlim(xmin, xmax)
-            axes.set_ylim(ymin, ymax)
-            axes.set_zlim(zmin, zmax)
-        return axes
-
-    def plot(self, plot=None, **kwargs):
-        """
-        Display 3D plot of set.
-        """
-        if self.dimension == 2:
-            return self._plot_2d(plot=plot, **kwargs)
-        elif self.dimension == 3:
-            return self._plot_3d(plot=plot, **kwargs)
-        else:
-            raise ValueError('polyhedron must be 2 or 3-dimensional')
-
-
-def _polymorphic(func):
-    @functools.wraps(func)
-    def wrapper(left, right):
-        if not isinstance(left, Expression):
-            if isinstance(left, numbers.Rational):
-                left = Rational(left)
-            else:
-                raise TypeError('left must be a a rational number '
-                    'or a linear expression')
-        if not isinstance(right, Expression):
-            if isinstance(right, numbers.Rational):
-                right = Rational(right)
-            else:
-                raise TypeError('right must be a a rational number '
-                    'or a linear expression')
-        return func(left, right)
-    return wrapper
-
-@_polymorphic
-def Lt(left, right):
-    """
-    Return true if the first set is less than the second.
-    """
-    return Polyhedron([], [right - left - 1])
-
-@_polymorphic
-def Le(left, right):
-    """
-    Return true the first set is less than or equal to the second.
-    """
-    return Polyhedron([], [right - left])
-
-@_polymorphic
-def Eq(left, right):
-    """
-    Return true if the sets are equal.
-    """
-    return Polyhedron([left - right], [])
-
-@_polymorphic
-def Ne(left, right):
-    """
-    Return true if the sets are NOT equal.
-    """
-    return ~Eq(left, right)
-
-@_polymorphic
-def Gt(left, right):
-    """
-    Return true if the first set is greater than the second set.
-    """
-    return Polyhedron([], [left - right - 1])
-
-@_polymorphic
-def Ge(left, right):
-    """
-    Return true if the first set is greater than or equal the second set.
-    """
-    return Polyhedron([], [left - right])
-
-
-Empty = Eq(1, 0)
-
-Universe = Polyhedron([])