--------------
- To create any polyhedron, first define the symbols used. Then use the polyhedron functions to define the constraints. The following is a simple running example illustrating some different operations and properties that can be performed by LinPy with two squares.
-
- >>> from linpy import *
- >>> x, y = symbols('x y')
- >>> # define the constraints of the polyhedron
- >>> square1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2)
- >>> square1
- And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0))
-
- Binary operations and properties examples:
-
- >>> square2 = Le(1, x) & Le(x, 3) & Le(1, y) & Le(y, 3)
- >>> #test equality
- >>> square1 == square2
- False
- >>> # compute the union of two polyhedrons
- >>> square1 | square2
- Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)))
- >>> # check if square1 and square2 are disjoint
- >>> square1.disjoint(square2)
- False
- >>> # compute the intersection of two polyhedrons
- >>> square1 & square2
- And(Ge(x - 1, 0), Ge(-x + 2, 0), Ge(y - 1, 0), Ge(-y + 2, 0))
- >>> # compute the convex union of two polyhedrons
- >>> Polyhedron(square1 | sqaure2)
- And(Ge(x, 0), Ge(y, 0), Ge(-y + 3, 0), Ge(-x + 3, 0), Ge(x - y + 2, 0), Ge(-x + y + 2, 0))
-
- Unary operation and properties examples:
-
- >>> square1.isempty()
- False
- >>> square1.symbols()
- (x, y)
- >>> square1.inequalities
- (x, -x + 2, y, -y + 2)
- >>> # project out the variable x
- >>> square1.project([x])
- And(Ge(-y + 2, 0), Ge(y, 0))
-
+--------------
+
+To create any polyhedron, first define the symbols used.
+Then use the polyhedron functions to define the constraints.
+The following is a simple running example illustrating some different operations and properties that can be performed by LinPy with two squares.
+
+>>> from linpy import *
+>>> x, y = symbols('x y')
+>>> # define the constraints of the polyhedron
+>>> square1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2)
+>>> square1
+And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0))
+
+Binary operations and properties examples:
+
+>>> # create a polyhedron from a string
+>>> square2 = Polyhedron('1 <= x') & Polyhedron('x <= 3') & \
+ Polyhedron('1 <= y') & Polyhedron('y <= 3')
+>>> #test equality
+>>> square1 == square2
+False
+>>> # compute the union of two polyhedra
+>>> square1 | square2
+Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), \
+ And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)))
+>>> # check if square1 and square2 are disjoint
+>>> square1.disjoint(square2)
+False
+>>> # compute the intersection of two polyhedra
+>>> square1 & square2
+And(Ge(x - 1, 0), Ge(-x + 2, 0), Ge(y - 1, 0), Ge(-y + 2, 0))
+>>> # compute the convex union of two polyhedra
+>>> Polyhedron(square1 | sqaure2)
+And(Ge(x, 0), Ge(y, 0), Ge(-y + 3, 0), Ge(-x + 3, 0), \
+ Ge(x - y + 2, 0), Ge(-x + y + 2, 0))
+
+Unary operation and properties examples:
+
+>>> square1.isempty()
+False
+>>> # compute the complement of square1
+>>> ~square1
+Or(Ge(-x - 1, 0), Ge(x - 3, 0), And(Ge(x, 0), Ge(-x + 2, 0), \
+ Ge(-y - 1, 0)), And(Ge(x, 0), Ge(-x + 2, 0), Ge(y - 3, 0)))
+>>> square1.symbols()
+(x, y)
+>>> square1.inequalities
+(x, -x + 2, y, -y + 2)
+>>> # project out the variable x
+>>> square1.project([x])
+And(Ge(-y + 2, 0), Ge(y, 0))
+