symbols to their coefficients, and a constant term. The coefficients and
the constant term must be rational numbers.
- For example, the linear expression x + 2y + 1 can be constructed using
+ For example, the linear expression x + 2*y + 1 can be constructed using
one of the following instructions:
>>> x, y = symbols('x y')
Alternatively, linear expressions can be constructed from a string:
- >>> LinExpr('x + 2*y + 1')
+ >>> LinExpr('x + 2y + 1')
A linear expression with a single symbol of coefficient 1 and no
constant term is automatically subclassed as a Symbol instance. A linear
"""
if not isinstance(symbol, Symbol):
raise TypeError('symbol must be a Symbol instance')
- return Rational(self._coefficients.get(symbol, 0))
+ return self._coefficients.get(symbol, Fraction(0))
__getitem__ = coefficient
Iterate over the pairs (symbol, value) of linear terms in the
expression. The constant term is ignored.
"""
- for symbol, coefficient in self._coefficients.items():
- yield symbol, Rational(coefficient)
+ yield from self._coefficients.items()
@property
def constant(self):
"""
The constant term of the expression.
"""
- return Rational(self._constant)
+ return self._constant
@property
def symbols(self):
Iterate over the coefficient values in the expression, and the constant
term.
"""
- for coefficient in self._coefficients.values():
- yield Rational(coefficient)
- yield Rational(self._constant)
+ yield from self._coefficients.values()
+ yield self._constant
def __bool__(self):
return True
@_polymorphic
def __eq__(self, other):
"""
- Test whether two linear expressions are equal.
+ Test whether two linear expressions are equal. Unlike methods
+ LinExpr.__lt__(), LinExpr.__le__(), LinExpr.__ge__(), LinExpr.__gt__(),
+ the result is a boolean value, not a polyhedron. To express that two
+ linear expressions are equal or not equal, use functions Eq() and Ne()
+ instead.
"""
- return isinstance(other, LinExpr) and \
- self._coefficients == other._coefficients and \
+ return self._coefficients == other._coefficients and \
self._constant == other._constant
- def __le__(self, other):
- from .polyhedra import Le
- return Le(self, other)
-
+ @_polymorphic
def __lt__(self, other):
- from .polyhedra import Lt
- return Lt(self, other)
+ from .polyhedra import Polyhedron
+ return Polyhedron([], [other - self - 1])
+
+ @_polymorphic
+ def __le__(self, other):
+ from .polyhedra import Polyhedron
+ return Polyhedron([], [other - self])
+ @_polymorphic
def __ge__(self, other):
- from .polyhedra import Ge
- return Ge(self, other)
+ from .polyhedra import Polyhedron
+ return Polyhedron([], [self - other])
+ @_polymorphic
def __gt__(self, other):
- from .polyhedra import Gt
- return Gt(self, other)
+ from .polyhedra import Polyhedron
+ return Polyhedron([], [self - other - 1])
def scaleint(self):
"""
Return the expression multiplied by its lowest common denominator to
make all values integer.
"""
- lcm = functools.reduce(lambda a, b: a*b // gcd(a, b),
+ lcd = functools.reduce(lambda a, b: a*b // gcd(a, b),
[value.denominator for value in self.values()])
- return self * lcm
+ return self * lcd
def subs(self, symbol, expression=None):
"""
2*x + y + 1
"""
if expression is None:
- if isinstance(symbol, Mapping):
- symbol = symbol.items()
- substitutions = symbol
+ substitutions = dict(symbol)
else:
- substitutions = [(symbol, expression)]
- result = self
- for symbol, expression in substitutions:
+ substitutions = {symbol: expression}
+ for symbol in substitutions:
if not isinstance(symbol, Symbol):
raise TypeError('symbols must be Symbol instances')
- coefficients = [(othersymbol, coefficient)
- for othersymbol, coefficient in result._coefficients.items()
- if othersymbol != symbol]
- coefficient = result._coefficients.get(symbol, 0)
- constant = result._constant
- result = LinExpr(coefficients, constant) + coefficient*expression
+ result = self._constant
+ for symbol, coefficient in self._coefficients.items():
+ expression = substitutions.get(symbol, symbol)
+ result += coefficient * expression
return result
@classmethod
return left / right
raise SyntaxError('invalid syntax')
- _RE_NUM_VAR = re.compile(r'(\d+|\))\s*([^\W\d_]\w*|\()')
+ _RE_NUM_VAR = re.compile(r'(\d+|\))\s*([^\W\d]\w*|\()')
@classmethod
def fromstring(cls, string):
Create an expression from a string. Raise SyntaxError if the string is
not properly formatted.
"""
- # add implicit multiplication operators, e.g. '5x' -> '5*x'
+ # Add implicit multiplication operators, e.g. '5x' -> '5*x'.
string = LinExpr._RE_NUM_VAR.sub(r'\1*\2', string)
tree = ast.parse(string, 'eval')
- expr = cls._fromast(tree)
- if not isinstance(expr, cls):
+ expression = cls._fromast(tree)
+ if not isinstance(expression, cls):
raise SyntaxError('invalid syntax')
- return expr
+ return expression
def __repr__(self):
string = ''
string += ' - {}'.format(-constant)
return string
- def _repr_latex_(self):
- string = ''
- for i, (symbol, coefficient) in enumerate(self.coefficients()):
- if coefficient == 1:
- if i != 0:
- string += ' + '
- elif coefficient == -1:
- string += '-' if i == 0 else ' - '
- elif i == 0:
- string += '{}'.format(coefficient._repr_latex_().strip('$'))
- elif coefficient > 0:
- string += ' + {}'.format(coefficient._repr_latex_().strip('$'))
- elif coefficient < 0:
- string += ' - {}'.format((-coefficient)._repr_latex_().strip('$'))
- string += '{}'.format(symbol._repr_latex_().strip('$'))
- constant = self.constant
- if len(string) == 0:
- string += '{}'.format(constant._repr_latex_().strip('$'))
- elif constant > 0:
- string += ' + {}'.format(constant._repr_latex_().strip('$'))
- elif constant < 0:
- string += ' - {}'.format((-constant)._repr_latex_().strip('$'))
- return '$${}$$'.format(string)
-
def _parenstr(self, always=False):
string = str(self)
if not always and (self.isconstant() or self.issymbol()):
return '({})'.format(string)
@classmethod
- def fromsympy(cls, expr):
+ def fromsympy(cls, expression):
"""
- Create a linear expression from a sympy expression. Raise TypeError is
+ Create a linear expression from a SymPy expression. Raise TypeError is
the sympy expression is not linear.
"""
import sympy
coefficients = []
constant = 0
- for symbol, coefficient in expr.as_coefficients_dict().items():
+ for symbol, coefficient in expression.as_coefficients_dict().items():
coefficient = Fraction(coefficient.p, coefficient.q)
if symbol == sympy.S.One:
constant = coefficient
elif isinstance(symbol, sympy.Dummy):
- # we cannot properly convert dummy symbols
+ # We cannot properly convert dummy symbols with respect to
+ # symbol equalities.
raise TypeError('cannot convert dummy symbols')
elif isinstance(symbol, sympy.Symbol):
symbol = Symbol(symbol.name)
coefficients.append((symbol, coefficient))
else:
- raise TypeError('non-linear expression: {!r}'.format(expr))
- expr = LinExpr(coefficients, constant)
- if not isinstance(expr, cls):
+ raise TypeError('non-linear expression: {!r}'.format(expression))
+ expression = LinExpr(coefficients, constant)
+ if not isinstance(expression, cls):
raise TypeError('cannot convert to a {} instance'.format(cls.__name__))
- return expr
+ return expression
def tosympy(self):
"""
- Convert the linear expression to a sympy expression.
+ Convert the linear expression to a SymPy expression.
"""
import sympy
- expr = 0
+ expression = 0
for symbol, coefficient in self.coefficients():
term = coefficient * sympy.Symbol(symbol.name)
- expr += term
- expr += self.constant
- return expr
+ expression += term
+ expression += self.constant
+ return expression
class Symbol(LinExpr):
Two instances of Symbol are equal if they have the same name.
"""
+ __slots__ = (
+ '_name',
+ '_constant',
+ '_symbols',
+ '_dimension',
+ )
+
def __new__(cls, name):
"""
Return a symbol with the name string given in argument.
raise SyntaxError('invalid syntax')
self = object().__new__(cls)
self._name = name
- self._coefficients = {self: Fraction(1)}
self._constant = Fraction(0)
self._symbols = (self,)
self._dimension = 1
return self
+ @property
+ def _coefficients(self):
+ # This is not implemented as an attribute, because __hash__ is not
+ # callable in __new__ in class Dummy.
+ return {self: Fraction(1)}
+
@property
def name(self):
"""
return True
def __eq__(self, other):
- return self.sortkey() == other.sortkey()
+ if isinstance(other, Symbol):
+ return self.sortkey() == other.sortkey()
+ return NotImplemented
def asdummy(self):
"""
def __repr__(self):
return self.name
- def _repr_latex_(self):
- return '$${}$$'.format(self.name)
-
def symbols(names):
"""
"""
if name is None:
name = 'Dummy_{}'.format(Dummy._count)
- elif not isinstance(name, str):
- raise TypeError('name must be a string')
- self = object().__new__(cls)
+ self = super().__new__(cls, name)
self._index = Dummy._count
- self._name = name.strip()
- self._coefficients = {self: Fraction(1)}
- self._constant = Fraction(0)
- self._symbols = (self,)
- self._dimension = 1
Dummy._count += 1
return self
def __repr__(self):
return '_{}'.format(self.name)
- def _repr_latex_(self):
- return '$${}_{{{}}}$$'.format(self.name, self._index)
-
class Rational(LinExpr, Fraction):
"""
fractions.Fraction classes.
"""
+ __slots__ = (
+ '_coefficients',
+ '_constant',
+ '_symbols',
+ '_dimension',
+ ) + Fraction.__slots__
+
def __new__(cls, numerator=0, denominator=None):
self = object().__new__(cls)
self._coefficients = {}
return '{!r}'.format(self.numerator)
else:
return '{!r}/{!r}'.format(self.numerator, self.denominator)
-
- def _repr_latex_(self):
- if self.denominator == 1:
- return '$${}$$'.format(self.numerator)
- elif self.numerator < 0:
- return '$$-\\frac{{{}}}{{{}}}$$'.format(-self.numerator,
- self.denominator)
- else:
- return '$$\\frac{{{}}}{{{}}}$$'.format(self.numerator,
- self.denominator)