return self,
def disjoint(self):
+ """
+ Return this set as disjoint.
+ """
return self
def isuniverse(self):
+ """
+ Return true if this set is the Universe set.
+ """
islbset = self._toislbasicset(self.equalities, self.inequalities,
self.symbols)
universe = bool(libisl.isl_basic_set_is_universe(islbset))
return universe
def aspolyhedron(self):
+ """
+ Return polyhedral hull of this set.
+ """
return self
def __contains__(self, point):
for m in points[1:]:
om = Vector(o, m)
normprod = norm_oa * om.norm()
- cosinus = oa.dot(om) / normprod
+ cosinus = max(oa.dot(om) / normprod, -1.)
sinus = u.dot(oa.cross(om)) / normprod
angle = math.acos(cosinus)
angle = math.copysign(angle, sinus)
faces.append(face)
return faces
- def plot(self):
+ def _plot_2d(self, plot=None, **kwargs):
import matplotlib.pyplot as plt
- from matplotlib.path import Path
- import matplotlib.patches as patches
-
- if len(self.symbols)> 3:
- raise TypeError
-
- elif len(self.symbols) == 2:
- verts = self.vertices()
- points = []
- codes = [Path.MOVETO]
- for vert in verts:
- pairs = ()
- for sym in sorted(vert, key=Symbol.sortkey):
- num = vert.get(sym)
- pairs = pairs + (num,)
- points.append(pairs)
- points.append((0.0, 0.0))
- num = len(points)
- while num > 2:
- codes.append(Path.LINETO)
- num = num - 1
- else:
- codes.append(Path.CLOSEPOLY)
- path = Path(points, codes)
+ from matplotlib.patches import Polygon
+ vertices = self._sort_polygon_2d(self.vertices())
+ xys = [tuple(vertex.values()) for vertex in vertices]
+ if plot is None:
fig = plt.figure()
- ax = fig.add_subplot(111)
- patch = patches.PathPatch(path, facecolor='blue', lw=2)
- ax.add_patch(patch)
- ax.set_xlim(-5,5)
- ax.set_ylim(-5,5)
- plt.show()
-
- elif len(self.symbols)==3:
- return 0
-
- return points
+ plot = fig.add_subplot(1, 1, 1)
+ xmin, xmax = plot.get_xlim()
+ ymin, ymax = plot.get_xlim()
+ xs, ys = zip(*xys)
+ xmin, xmax = min(xmin, float(min(xs))), max(xmax, float(max(xs)))
+ ymin, ymax = min(ymin, float(min(ys))), max(ymax, float(max(ys)))
+ plot.set_xlim(xmin, xmax)
+ plot.set_ylim(ymin, ymax)
+ plot.add_patch(Polygon(xys, closed=True, **kwargs))
+ return plot
+
+ def _plot_3d(self, plot=None, **kwargs):
+ import matplotlib.pyplot as plt
+ from mpl_toolkits.mplot3d import Axes3D
+ from mpl_toolkits.mplot3d.art3d import Poly3DCollection
+ if plot is None:
+ fig = plt.figure()
+ axes = Axes3D(fig)
+ else:
+ axes = plot
+ xmin, xmax = axes.get_xlim()
+ ymin, ymax = axes.get_xlim()
+ zmin, zmax = axes.get_xlim()
+ poly_xyzs = []
+ for vertices in self.faces():
+ if len(vertices) == 0:
+ continue
+ vertices = Polyhedron._sort_polygon_3d(vertices)
+ vertices.append(vertices[0])
+ face_xyzs = [tuple(vertex.values()) for vertex in vertices]
+ xs, ys, zs = zip(*face_xyzs)
+ xmin, xmax = min(xmin, float(min(xs))), max(xmax, float(max(xs)))
+ ymin, ymax = min(ymin, float(min(ys))), max(ymax, float(max(ys)))
+ zmin, zmax = min(zmin, float(min(zs))), max(zmax, float(max(zs)))
+ poly_xyzs.append(face_xyzs)
+ collection = Poly3DCollection(poly_xyzs, **kwargs)
+ axes.add_collection3d(collection)
+ axes.set_xlim(xmin, xmax)
+ axes.set_ylim(ymin, ymax)
+ axes.set_zlim(zmin, zmax)
+ return axes
+
+ def plot(self, plot=None, **kwargs):
+ """
+ Display 3D plot of set.
+ """
+ if self.dimension == 2:
+ return self._plot_2d(plot=plot, **kwargs)
+ elif self.dimension == 3:
+ return self._plot_3d(plot=plot, **kwargs)
+ else:
+ raise ValueError('polyhedron must be 2 or 3-dimensional')
def _polymorphic(func):
@_polymorphic
def Lt(left, right):
+ """
+ Return true if the first set is less than the second.
+ """
return Polyhedron([], [right - left - 1])
@_polymorphic
def Le(left, right):
+ """
+ Return true the first set is less than or equal to the second.
+ """
return Polyhedron([], [right - left])
@_polymorphic
def Eq(left, right):
+ """
+ Return true if the sets are equal.
+ """
return Polyhedron([left - right], [])
@_polymorphic
def Ne(left, right):
+ """
+ Return true if the sets are NOT equal.
+ """
return ~Eq(left, right)
@_polymorphic
def Gt(left, right):
+ """
+ Return true if the first set is greater than the second set.
+ """
return Polyhedron([], [left - right - 1])
@_polymorphic
def Ge(left, right):
+ """
+ Return true if the first set is greater than or equal the second set.
+ """
return Polyhedron([], [left - right])