def aspolyhedron(self):
return self
+ def convex_union(self, *others):
+ """
+ Return the convex union of two or more polyhedra.
+ """
+ for other in others:
+ if not isinstance(other, Polyhedron):
+ raise TypeError('arguments must be Polyhedron instances')
+ return Polyhedron(self.union(*others))
+
def __contains__(self, point):
if not isinstance(point, Point):
raise TypeError('point must be a Point instance')
for inequality in self.inequalities]
return Polyhedron(equalities, inequalities)
- def _asinequalities(self):
+ def asinequalities(self):
+ """
+ Express the polyhedron using inequalities, given as a list of
+ expressions greater or equal to 0.
+ """
inequalities = list(self.equalities)
inequalities.extend([-expression for expression in self.equalities])
inequalities.extend(self.inequalities)
used on large polyhedra.
"""
if not isinstance(other, Polyhedron):
- raise ValueError('argument must be a Polyhedron instance')
- inequalities1 = self._asinequalities()
- inequalities2 = other._asinequalities()
+ raise TypeError('argument must be a Polyhedron instance')
+ inequalities1 = self.asinequalities()
+ inequalities2 = other.asinequalities()
inequalities = []
for inequality1 in inequalities1:
if other <= Polyhedron(inequalities=[inequality1]):
The empty polyhedron, whose set of constraints is not satisfiable.
"""
- __slots__ = Polyhedron.__slots__
-
def __new__(cls):
self = object().__new__(cls)
self._equalities = (Rational(1),)
i.e. is empty.
"""
- __slots__ = Polyhedron.__slots__
-
def __new__(cls):
self = object().__new__(cls)
self._equalities = ()
Universe = UniverseType()
-def _polymorphic(func):
+def _pseudoconstructor(func):
@functools.wraps(func)
- def wrapper(left, right):
- if not isinstance(left, LinExpr):
- if isinstance(left, numbers.Rational):
- left = Rational(left)
- else:
- raise TypeError('left must be a a rational number '
- 'or a linear expression')
- if not isinstance(right, LinExpr):
- if isinstance(right, numbers.Rational):
- right = Rational(right)
- else:
- raise TypeError('right must be a a rational number '
- 'or a linear expression')
- return func(left, right)
+ def wrapper(expr1, expr2, *exprs):
+ exprs = (expr1, expr2) + exprs
+ for expr in exprs:
+ if not isinstance(expr, LinExpr):
+ if isinstance(expr, numbers.Rational):
+ expr = Rational(expr)
+ else:
+ raise TypeError('arguments must be rational numbers '
+ 'or linear expressions')
+ return func(*exprs)
return wrapper
-@_polymorphic
-def Lt(left, right):
+@_pseudoconstructor
+def Lt(*exprs):
"""
Create the polyhedron with constraints expr1 < expr2 < expr3 ...
"""
- return Polyhedron([], [right - left - 1])
+ inequalities = []
+ for left, right in zip(exprs, exprs[1:]):
+ inequalities.append(right - left - 1)
+ return Polyhedron([], inequalities)
-@_polymorphic
-def Le(left, right):
+@_pseudoconstructor
+def Le(*exprs):
"""
Create the polyhedron with constraints expr1 <= expr2 <= expr3 ...
"""
- return Polyhedron([], [right - left])
+ inequalities = []
+ for left, right in zip(exprs, exprs[1:]):
+ inequalities.append(right - left)
+ return Polyhedron([], inequalities)
-@_polymorphic
-def Eq(left, right):
+@_pseudoconstructor
+def Eq(*exprs):
"""
Create the polyhedron with constraints expr1 == expr2 == expr3 ...
"""
- return Polyhedron([left - right], [])
+ equalities = []
+ for left, right in zip(exprs, exprs[1:]):
+ equalities.append(left - right)
+ return Polyhedron(equalities, [])
-@_polymorphic
-def Ne(left, right):
+@_pseudoconstructor
+def Ne(*exprs):
"""
Create the domain such that expr1 != expr2 != expr3 ... The result is a
- Domain, not a Polyhedron.
+ Domain object, not a Polyhedron.
"""
- return ~Eq(left, right)
+ domain = Universe
+ for left, right in zip(exprs, exprs[1:]):
+ domain &= ~Eq(left, right)
+ return domain
-@_polymorphic
-def Gt(left, right):
+@_pseudoconstructor
+def Ge(*exprs):
"""
- Create the polyhedron with constraints expr1 > expr2 > expr3 ...
+ Create the polyhedron with constraints expr1 >= expr2 >= expr3 ...
"""
- return Polyhedron([], [left - right - 1])
+ inequalities = []
+ for left, right in zip(exprs, exprs[1:]):
+ inequalities.append(left - right)
+ return Polyhedron([], inequalities)
-@_polymorphic
-def Ge(left, right):
+@_pseudoconstructor
+def Gt(*exprs):
"""
- Create the polyhedron with constraints expr1 >= expr2 >= expr3 ...
+ Create the polyhedron with constraints expr1 > expr2 > expr3 ...
"""
- return Polyhedron([], [left - right])
+ inequalities = []
+ for left, right in zip(exprs, exprs[1:]):
+ inequalities.append(left - right - 1)
+ return Polyhedron([], inequalities)