Version 1.0.1
[linpy.git] / linpy / polyhedra.py
index f802151..1ccbe9c 100644 (file)
@@ -317,19 +317,11 @@ class Polyhedron(Domain):
         else:
             return 'And({})'.format(', '.join(strings))
 
-    def _repr_latex_(self):
-        strings = []
-        for equality in self.equalities:
-            strings.append('{} = 0'.format(equality._repr_latex_().strip('$')))
-        for inequality in self.inequalities:
-            strings.append('{} \\ge 0'.format(inequality._repr_latex_().strip('$')))
-        return '$${}$$'.format(' \\wedge '.join(strings))
-
     @classmethod
-    def fromsympy(cls, expr):
-        domain = Domain.fromsympy(expr)
+    def fromsympy(cls, expression):
+        domain = Domain.fromsympy(expression)
         if not isinstance(domain, Polyhedron):
-            raise ValueError('non-polyhedral expression: {!r}'.format(expr))
+            raise ValueError('non-polyhedral expression: {!r}'.format(expression))
         return domain
 
     def tosympy(self):
@@ -363,9 +355,6 @@ class EmptyType(Polyhedron):
     def __repr__(self):
         return 'Empty'
 
-    def _repr_latex_(self):
-        return '$$\\emptyset$$'
-
 Empty = EmptyType()
 
 
@@ -386,83 +375,80 @@ class UniverseType(Polyhedron):
     def __repr__(self):
         return 'Universe'
 
-    def _repr_latex_(self):
-        return '$$\\Omega$$'
-
 Universe = UniverseType()
 
 
 def _pseudoconstructor(func):
     @functools.wraps(func)
-    def wrapper(expr1, expr2, *exprs):
-        exprs = (expr1, expr2) + exprs
-        for expr in exprs:
-            if not isinstance(expr, LinExpr):
-                if isinstance(expr, numbers.Rational):
-                    expr = Rational(expr)
+    def wrapper(expression1, expression2, *expressions):
+        expressions = (expression1, expression2) + expressions
+        for expression in expressions:
+            if not isinstance(expression, LinExpr):
+                if isinstance(expression, numbers.Rational):
+                    expression = Rational(expression)
                 else:
                     raise TypeError('arguments must be rational numbers '
                         'or linear expressions')
-        return func(*exprs)
+        return func(*expressions)
     return wrapper
 
 @_pseudoconstructor
-def Lt(*exprs):
+def Lt(*expressions):
     """
     Create the polyhedron with constraints expr1 < expr2 < expr3 ...
     """
     inequalities = []
-    for left, right in zip(exprs, exprs[1:]):
+    for left, right in zip(expressions, expressions[1:]):
         inequalities.append(right - left - 1)
     return Polyhedron([], inequalities)
 
 @_pseudoconstructor
-def Le(*exprs):
+def Le(*expressions):
     """
     Create the polyhedron with constraints expr1 <= expr2 <= expr3 ...
     """
     inequalities = []
-    for left, right in zip(exprs, exprs[1:]):
+    for left, right in zip(expressions, expressions[1:]):
         inequalities.append(right - left)
     return Polyhedron([], inequalities)
 
 @_pseudoconstructor
-def Eq(*exprs):
+def Eq(*expressions):
     """
     Create the polyhedron with constraints expr1 == expr2 == expr3 ...
     """
     equalities = []
-    for left, right in zip(exprs, exprs[1:]):
+    for left, right in zip(expressions, expressions[1:]):
         equalities.append(left - right)
     return Polyhedron(equalities, [])
 
 @_pseudoconstructor
-def Ne(*exprs):
+def Ne(*expressions):
     """
     Create the domain such that expr1 != expr2 != expr3 ... The result is a
     Domain object, not a Polyhedron.
     """
     domain = Universe
-    for left, right in zip(exprs, exprs[1:]):
+    for left, right in zip(expressions, expressions[1:]):
         domain &= ~Eq(left, right)
     return domain
 
 @_pseudoconstructor
-def Ge(*exprs):
+def Ge(*expressions):
     """
     Create the polyhedron with constraints expr1 >= expr2 >= expr3 ...
     """
     inequalities = []
-    for left, right in zip(exprs, exprs[1:]):
+    for left, right in zip(expressions, expressions[1:]):
         inequalities.append(left - right)
     return Polyhedron([], inequalities)
 
 @_pseudoconstructor
-def Gt(*exprs):
+def Gt(*expressions):
     """
     Create the polyhedron with constraints expr1 > expr2 > expr3 ...
     """
     inequalities = []
-    for left, right in zip(exprs, exprs[1:]):
+    for left, right in zip(expressions, expressions[1:]):
         inequalities.append(left - right - 1)
     return Polyhedron([], inequalities)